

The outcome of children with tumors has improved dramatically over the past few decades with the use of multimodality therapy.

Late effects include organ dysfunction, subsequent malignant and benign neoplasms, and adverse psychosocial sequelae, placing survivors at risk for chronic health conditions as they enter their adult years.

The 30-year cumulative incidence for severe, disabling, or life-threatening conditions or death due to a chronic condition is 42% and the 30-year cumulative mortality is 18% among survivors.

"Cure is not enough" G. J. D'Angio

Minimizing the RT morbidity

Avoiding RT Postponing RT Reducing dose Reducing target volume Improving technique Investigating novel fractionation

New radiation therapy modalities enable radiation oncologists to increase dose to tumor while avoiding surrounding normal structures.

3DCRTBrachyIMRTStereotaxisIORTParticle

<u>A "different" dose distribution is not the</u> <u>same as an improved clinical outcome.</u>

We often hear a classic circular argument:

A different dose distribution = a different clinical outcome, because protons give a different dose distribution = a different clinical outcome,

then protons are better because they give a better dose distribution...and around and around.

J Med Ethics 35:684-7, 2009 B. Hoffmann

Disease	Number of cases in USA per year	% of cases irradiated	Number of cases irradiated
Acute Lymphocytic Leukemia	2400	10	240
Acute Non-Lymphocytic Leukemia	850	5	43
Lymphoma	1700	30	510
Medulloblastoma	460	90	400
Astrocytoma, including brainstem	1140	50	570
Ependymoma	200	60	120
Neuroblastoma	650	10	65
Wilms	500	10	50
Ewing	200	60	120
Rhabdomyosarcoma	350	60	210
NRSTS	550	50	275
	9000	29	2603

Cancer Incidence & Survival among Children and Adolescents JACR 1:488,2004

International Journal of Radiation Oncology biology • physics

Critical Review

Proton Therapy in Children: A Systematic Review of Clinical Effectiveness in 15 Pediatric Cancers

Roos Leroy, PhD,* Nadia Benahmed, MSc,* Frank Hulstaert, MD,* Nancy Van Damme, PhD,[†] and Dirk De Ruysscher, PhD[‡]

*Belgian Healthcare Knowledge Centre (KCE), Brussels; [†]Belgian Cancer Registry, Brussels; and [‡]Department of Radiation Oncology, University of Leuven, Leuven, Belgium

Received Apr 8, 2015, and in revised form Oct 5, 2015. Accepted for publication Oct 13, 2015.

Most suffered from serious methodologic limitations, yielding a very low level of clinical evidence for the outcomes in all indications.

Craniopharyngioma (3)

At present very low-level clinical evidence that PT compared with IMRT does not result in significant differences in 3-year OS, 3-year CFFS, 3-year NFFS, toxicity or cyst dynamics.

At present very low level clinical evidence that PT results in lower risk of developing RT induced in-field secondary malignancies.

Retinoblastoma (2)

Treatment of common pediatric CNS malignancies with proton therapy

Arpit Chhabra¹, Anita Mahajan²

¹Department of Radiation Oncology, The University of Maryland School of Medicine, Baltimore, Maryland, USA; ²Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA

Conclusions

... the ultimate hope is to complete a well controlled prospective trial comparing proton and photon radiation therapy. In the interim, PRT should be strongly considered when treating pediatric CNS tumors in an effort to allow children to live and mature with minimal treatment sequelae.

A Systematic Review of the Cost and Cost-Effectiveness Studies of Proton Radiotherapy

Vivek Verma MD¹; Mark V. Mishra MD²; and Minesh P. Mehta MBChB²

BACKGROUND: Economic analyses of new technologies, such as proton-beam radiotherapy (PBT), are a public health priority. To

Careful patient selection is absolutely critical to assess costeffectiveness. Together with increasing PBT availability, clinical trial evidence, and ongoing major technological improvements, cost-effectiveness data and conclusions from this analysis could change rapidly.

nas not been demonstrated that PBT is cost-effective for prostate cancer or early stage NSCLC. Careful patient selection is absolutely critical to assess cost-effectiveness. Together with increasing PBT availability, clinical trial evidence, and ongoing major technological improvements, cost-effectiveness data and conclusions from this analysis could change rapidly. *Cancer* 2016;122:1483-501. © 2016 *American Cancer Society*.

KEYWORDS: cost-effectiveness, health care economics, operational costs, proton radiation therapy.

practical radiation encology

www.practicalradonc.org

Original Report

Practice patterns of photon and proton pediatric () image guided radiation treatment: Results from an International Pediatric Research Consortium

Our results suggest that IGRT is commonly used for radiation delivery in the management of pediatric tumors but that there is notable variability in when and how it is employed among institutions for a given treatment site.

data highlight the need for consensus These recommendations to guide clinical decision making for **IGRT** in the treatment of children.

Acta Oncologica, 2014; 53: 126–133

ORIGINAL ARTICLE

Assessment of volume segmentation in radiotherapy of adolescents; a treatment planning study by the Swedish Workgroup for Paediatric Radiotherapy

INGRID KRISTENSEN^{1,2}, MÅNS AGRUP³, PER BERGSTRÖM⁴, JACOB ENGELLAU⁵, HEDDA HAUGEN⁶, ULLA MARTINSSON⁷, KRISTINA NILSSON⁷, ZAHRA TAHERI-KADKHODA⁶, JACK LINDH⁴ & PER NILSSON^{2,5}

¹Department of Clinical Sciences, Oncology, Lund University, Lund, Sweden, ²Department of Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden, ³Department of Oncology, Linköping University Hospital, Linköping, Sweden, ⁴Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden, ⁵Department of Oncology, Skåne University Hospital, Lund University, Lund, Sweden, ⁶Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden and ⁷Department of Oncology, Uppsala University Hospital, Uppsala, Sweden

			Dose		Irradiated
			constraints*	Treated volume	Volume
		Dose (Gy)	(protocol)	$V_{95\%}$ (litres)	$V_{50\%}$ (litres)
Case 3	Bladder Rectum	43.6 (37.2–51.7) 33.2 (24.6–48.2)	_		
	Body			0.48 (0.20-1.11)	3.20 (1.43-5.96)

To provide high level reproducible RT for all children prospective RTQA

EpSSG SIOPEN SIOP Brain tumors Hodgkin's lymphoma Wilms' tumor

SIOP Brain tumors PNET 5

f QA and its influence I long term toxicity

to establish running for as many trials as possible

Pt XX: after first revision

$\mathsf{CTV} \! \rightarrow \mathsf{PTV}$

/iew	Data Property	Measurements	Data Order
lata Ur	nits: 🕫 GY 🤆 %	Upper Limit =	26.734 Gy
Col	orWash :	100.00 %	26.734 Gy
V	Data Interpolation	90.02 % -	- 24.065 Cly
	Operative 20	80.03 % -	- 21.396 Gy
10	opaoly = 30	70.05 % -	- 18.727 Gy
- 3	Jpper Cut = 26.734	60.07 % -	- 16.058 Gy
L	ower Cut = 0.2673	By 50.08 % -	- 13.389 Gy
7 Iso	dose (Gy) :	40.10 %	- 10.720 Gy
22	.23.21.06	- 30.12 % -	- 8.051 Gy
		20.13 % -	- 5.382 Gy
and in a		10.15 % -	- 2.713 Gy
alette	- Rainbow	.17%	0.044 Gy
	# of colors = 2	54 Lower Limit =	0.0443 Gy

Series	Equ	ipment	Data	Geometry	RT Dose
Modalit	y.	RTDOS	E		
Desorip	tion	TomoTh	herapy H	Planned Dose	
Number	5	-8571			
Date		20170	418		
Time		10552	1		

TUMOR BED BOOST: CTV and PTV

View	Data Prop	erty	Measurements	Data Order
Data Un	its: 🗭 HU		Vin Win	dow = 60
₩ Col	orWash :		3071	100
7	Data Interpo	ation		
	Opacity =	100 5	6	
U	pper Cut = 🛛	8071		
L	ower Cut = -	1000		- 40
- Iso	lose :		1	
Palette	= Grayscale #of color	e = 2t		-20 evel = 40
Palette Series	= Grayscale # of color Equipment	e 's = 26 Data	54	evel = 40
Palette Series Modalit	= Grayscale # of color Equipment	e -s = 26 Data CT	54	evel = 40
Palette Series Modalit Descrip	= Grayscale # of color Equipment y tion	e s = 20 Data CT 2.5mm		evel = 40
Palette Series Modalit Descrip Number	= Grayscale # of color Equipment y tion	e s = 2f Data CT 2.5mn 2		evel = 40
Palette Series Modalit Descrip Number Date	= Grayscale # of color Equipment y tion	e s = 2t Data CT 2.5mn 2 20170		evel = 40
Palette Series Modalit Descrip Number Date Time	= Grayscale # of color Equipment y tion	e Data CT 2.5mm 2 20170 11584	54 F L 54 F L 628 0	evel = 40
Palette Series Modalit Descrip Number Date Time Patient	= Grayscale # of color Equipment y tion Position	e Data CT 2.5mm 2 20170 11584 HFS =	54 V L 54 V L 6600 Metry CT 628 0 Head First-Supine	evel = 40

A

UNESPECTED!!!

SIOP PNET 5 MB	RADIOTHERAPY QUALITY CONTROL AIEOP PLAN REVISION FORM	SIOP PNET 5 MB	RADIOTHERAPY QUALITY CONTROL AIEOP PLAN REVISION FORM
Centre ID 132	MARVIN ID GPOH.07869	Centre ID 132	MARVIN ID GPOH.07869
Dosimetric verification	Dosimetric aims: 90 % of prescribed dose to 100 % of PTV 95 % of prescribed dose to 95 % of PTV 107 % of prescribed dose to ≤5 % of PTV	Dosimetric verifications	Dosimetric aims: 90 % of prescribed dose to 100 % of PTV 95 % of prescribed dose to 95 % of PTV 107 % of prescribed dose to ≤5 % of PTV
95% isodose to 95% isodose to ○ Correct ○ Minor deviatio ○ Major deviatio Deviation s 107% isodose to	99.3 % of PTV n (95% isodose between 90 and 95% of PTV) n (95% isodose to less than 90% of PTV) ite: C Frontal lobe C Oribriforme plate Temporal lobe C Other: 0.0 % of PTV	95% isodose to Correct Minor deviation Major deviation Deviation site	97.1 % of PTV (95% isodose between 90 and 95% of PTV) (95% isodose to less than 90% of PTV) C Cervical spine Thoracic spine C Lumbar spine O Other: 0.0 % of PTV
 ● Correct ● Minor deviatio ○ Major deviatio ○ Deviation s 	n (107% isodose between 5 and 10% of PTV) n (107% isodose to more than 10% of PTV) ite: O Frontal lobe O Cribriforme plate O Temporal lobe O Other:	 Correct Minor deviation Major deviation Deviation site 	(107% isodose between 5 and 10% of PTV) (107% isodose to more than 10% of PTV) Cervical spine Thoracic spine Lumbar spine Other:
Comments		Comments	

Hyperfractionated Accelerated Radiotherapy in the Milan Strategy for Metastatic Medulloblastoma

Lorenza Gandola, Maura Massimino, Graziella Cefalo, Carlo Solero, Filippo Spreafico, Emilia Pecori, Daria Riva, Paola Collini, Emanuele Pignoli, Felice Giangaspero, Roberto Luksch, Serena Berretta, Geraldina Poggi, Veronica Biassoni, Andrea Ferrari, Bianca Pollo, Claudio Favre, Iacopo Sardi, Monica Terenziani, and Franca Fossati-Bellani

Hyperfractionated Accelerated Radiotherapy in the Milan Strategy for Metastatic Medulloblastoma

Lorenza Gandola, Maura Massimino, Graziella Cefalo, Carlo Solero, Filippo Spreafico, Emilia Pecori, Daria Riva, Paola Collini, Emanuele Pignoli, Felice Giangaspero, Roberto Luksch, Serena Berretta, Geraldina Poggi, Veronica Biassoni, Andrea Ferrari, Bianca Pollo, Claudio Favre, Iacopo Sardi, Monica Terenziani, and Franca Fossati-Bellani

Hyperfractionated Accelerated Radiotherapy (HART)

	Neuraxis	Posterior fossa			
	39 Gy	60 Gy			
3 - 10 yrs*	31.2 Gy	59.7 Gy			
Fractionation	1.3 Gy x 2/day	1.5 Gy x 2/day			
Total treatment days: 22					
Boost to metastases: 9 Gy in 6 fractions of 1.5 Gy, 3 treatment days					
* If CR or PR before HART					

Milan series of 54 metastatic medulloblastoma patients

EFS and OS were 70%/67% and 72%/64% at 5/10 yrs, respectively

SIOP Brain Tumor Working Group

High Risk Medulloblastoma Study

- October 2012: active discussion began
- □ "Milan strategy": experimental arm of the randomized study
- April/May 2014: some European Centers reported cases of *unexpected* neurotoxicity and suspended the use of the HART protocol
- **SIOP PNET WG Meeting in Singapore, July 2014:**

Decisions:

- European survey on grade 3-4 neurotoxicity in all the recent/ongoing clinical trials for HR MBL
- Estimate of total number of patients treated according to the Milan strategy and of number of severe neurotoxicities
- 2 days meeting in Milan: 1 day for Radiation Oncologists and Physicists only to collegially review the radiotherapy plans of children showing severe neurotoxicity after combined intensive treatments to highlight possible correlations with radiotherapy technique and dosimetry

- Period of study: 2009-2014
- Estimated number of children treated according to the HART strategy: 240
- **Reported grade 3-4 neurotoxicity : 27 cases**
 - 18 global neuro-functional impairments
 - 4 myelitis
 - 5 brainstem/cerebellum radionecrosis
- 17/27 radiotherapy treatment plans were reviewed and discussed

Global neuro-functional impairment

- Children younger than 10
- High-dose Thiothepa administered after HART
- No correlation with radiotherapy technique and dosimetry

Milan series of 60 High Risk Medulloblastoma children:

- 5 severe global neurotoxicity
- all 5 children younger than 8 years, all received 2 cycles of HD Thiothepa
- 3/5 poor neurological conditions after surgery, 2/5 progressive disease
- median time to worsening 6 months (6-36 months) after treatment end
- worsening reaches a clinical plateau with some improvement
- 4/5 received CSI 39 Gy only without posterior fossa boost, 1/5 CSI 31,2 Gy with posterior fossa boost

- Myelitis
 - High-dose Thiothepa administered after HART in all cases
 - Upper cervical cord included in the posterior fossa boost volume

The summed doses all showed that the hot volumes were at the base of the brain within the head fields.

Centre 1

- **Myelitis**
 - High-dose Thiothepa administered after HART in all cases
 - Upper cervical cord included in the posterior fossa boost volume

SIOP-Europe Brain Tumor Working Group - High Risk Medulloblastoma Meeting

Radiation Oncologists and Physicists Meeting, Milan 6 November 2014

Brainstem/cerebellum radionecrosis

Additional 9 Gy boost to posterior fossa residuum (not contemplated in the original HART approach)

RIUNIONE PROTONTERAPIA Torino, 07 giugno 2016

Partecipanti:

Presidente e vice presidente AIEOP Franca Fagioli, Marco Zecca **Consiglieri CD AIEOP** Maura Massimino, Arcangelo Prete Segretaria CD AIEOP Paola Quarello Giovanni Scarzello, Salvina Barra, **Componenti GdLAIEOP** Lorenza Gandola, Maurizio Mascarin, "Radioterapia" Anna Mussano **Centro CNAO Pavia** Francesca Valvo, Alberto Iannalfi Maurizio Amichetti, Barbara Rombi, **Centro protoni Trento** Sabina Vennarini **Presidente AIRO** Elvio Russi

Tutti i presenti concordano che solo stabilendo delle modalità comuni di gestione del paziente, in centri di consolidata alta specializzazione e competenza, sia possibile proporre il trattamento radiante più idoneo, contenendo campagne mediatiche che possano influenzare negativamente l'iter terapeutico. Il 70-80% dei pazienti è arruolato in protocolli diagnostico-terapeutici nazionali o internazionali che prevedono direttive radioterapiche precise per dose, frazionamento e timing, presupponendo una strettissima collaborazione del team multidisciplinare che ha in carico il paziente.

Sono stati identificati i Centri autorizzati al trattamento mediante questionari di valutazione e visite ispettive sulla base dei criteri di Good Clinical Practice (GCP) e secondo la normativa Europea.

Sono stati anche identificati i professionisti esperti che possono essere coinvolti nel percorso di cura del paziente. Attualmente nessun protocollo pediatrico è aperto nei due Centri di Protonterapia Italiani, ne consegue che il trattamento con particelle implica l'esclusione del paziente dal protocollo in cui è stato precedentemente arruolato.

In Europa esistono centri in cui il radioterapista pediatrico della struttura di oncoematologia pediatrica, segue il paziente nel centro di protonterapia garantendo la continuità di cura.

Review article

Paediatric brain tumours: A review of radiotherapy, state of the art and challenges for the future regarding protontherapy and carbontherapy

Tumeurs cérébrales pédiatriques : revue de la littérature en radiothérapie, état de l'art et défis pour l'avenir en ce qui concerne la protonthérapie et la carbonethérapie J.-L. Habrand^{e,g,h,i,j},

A. Laprie^{a,b,*,c}, Y. Hu^d, C. Alapetite^e, C. Carrie^{d,f}, J.-L. Habrand^{e,g,h,i,j}, S. Bolle^{e,k}, P.-Y. Bondiau^{1,m}, A. Ducassou^{b,c}, A. Huchetⁿ, A.-I. Bertozzi^{c,o}, Y. Perel^o, É. Moyal^{a,b,c}, J. Balosso^{d,p}, on behalf of the radiotherapy committee of SFCE and France Hadron¹

^a Université Paul-Sabatier, Toulouse, France

^b Institut Claudius-Regaud, institut universitaire du cancer de Toulouse (IUCT)-Oncopole, radiation oncology, 1, avenue Irene-Joliot-Curie, 31059 Toulouse, France

^c Périclès-France-Hadron, Toulouse, France

^d GCS-Étoile-France-Hadron, Lyon, France

^e Institut Curie Paris Orsay (ICPO)-France-Hadron, Orsay, France

^f Centre Léon-Bérard, Lyon, France

^g Université Paris Sud, Orsay, France

h Archade-France-Hadron, Caen, France

ⁱ Centre François-Baclesse, Caen, France

^j Gustave-Roussy, Villejuif, France

^k Impact-France-Hadron, Nice, France

¹ Centre Antoine-Lacassagne, Nice, France

^m CHU de Bordeaux, Bordeaux, France

ⁿ Hôpital des Enfants, Toulouse, France

^o Université Grenoble Alpes, Grenoble, France

P CHU de Grenoble, Grenoble, France

Proposta di istituzione di una figura di radioterapista pediatrico esperto che possa svolgere attività di consulenza presso il centro di protonterapia.

Tutelare la prosecuzione del percorso diagnosticoterapeutico all'interno del protocollo.

Promuovere la crescita specifica in ambito pediatrico dei due centri italiani di protonterapia mediante la stipula di una consulenza a costo zero (eventuale copertura delle spese di trasferta da parte di AIEOP) tra il centro di protonterapia ed un radioterapista pediatrico esperto e certificato.