RADIO-CHEMIOTERAPIA NEOADIUVANTE,

CONCOMITANTE NEL CARCINOMA DELL'ESOFAGO

Sergio Fersino

U.O. Radioterapia Oncologica

Background

> The management of local-regional cancer of the esophagus and esophagogastric junction (EGJ) has undergone a major evolution over the past 15 years

The majority of patients now undergo some forms of combined modality therapy.
However, the optimal management of these patients remains controversial

There are two major histologies of esophageal cancer: squamous cell cancer (SCC) and adenocarcinoma (ADK)

> They differ in terms of their pathogenesis, epidemiology, tumor biology, and prognosis

Treatment Modalities for Esophageal Cancer

- 1. Surgery
- 2. Radiation Therapy
- 3. Chemotherapy
- -Multimodality Management

-Surgical resection remains the cornerstone of treatment for resectable esophageal cancer

TNM staging for esophageal cancer – AJCC/UICC 7th-2010

- The difference in tumor location also has implications for the choice of therapy
- Some suggest that induction CT alone may suffice for ADK, while results are superior with RT-CT for SCC because of the greater need for tumor downsizing to achieve a complete radical resection

Cervical Esophagus Tumors

- SCC of the cervical esophagus presents a unique management situation
- ✓ if Surgery is performed…removal of portions of the pharynx, the larynx, the thyroid gland, and portions of the proximal esophagus
- ✓ the management is more closely related to SCC of the head and neck
- ✓ RT-CT is preferred over surgery for proximal esophageal cancers where laryngectomy would be necessary for a good cancer operation...since survival appears to be comparable and major morbidity is avoided in most cases

Cervical Esophagus Tumors

✓ Which RT doses?

50-50.4 Gy + boost **10-16 Gy** (to tumor volume)

+ concomitant chemotherapy (CDDP and 5-FU).

Zhang et al. Radiother Oncol 2015; 116:257

(T2 - T3 - T4 or Node positive - M0)

- Adjuvant (Postoperative) Radiotherapy + Chemotherapy 1. Surgery
- 2. Neoadjuvant (Preoperative) Chemotherapy Surgery Chemotherapy

(Adenocarcinoma of distal esophagus and GEJ)

3. Neoadjuvant (Preoperative) Chemotherapy+Radiotherapy Surgery

(Adenocarcinoma and Squamous Carcinoma of Esophagus and GEJ)

(T2 – T3 – T4 or Node positive – M0)

-556 patients with locally advanced adenocarcinoma of stomach (80%) and GEJ (20%) were randomized to surgery alone or surgery adjuvant CT+RT

-CT used 2 cycles of 5FU/LV + **RT 4500 cGy** in 25 fractions over 5 weeks, followed by additional 2 cycles of 5FU/LV

-Median survival: 36 months versus 27 months in favor of **Surgery CT+RT** arm (p = 0.005)

-3-year OS: 50% versus 40% in **Surgery CT+RT** versus surgery alone arms (~10% absolute survival benefit)

Median OS: 26 months perioperative CT 18 months surgery alone

Cunningham et al – MRC MAGIC Trial – NEJM July 2006

Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: an updated meta-analysis

Adingp ¹⁹ 35 44 45 41 45 41 45 41 45 41 45 41 45 41 46 45 41 46 45 41 46 46 46 46 46 46 46 46 46 46	Squamous-cell carcinoma				
Le Prize ^{an} Le Prize ^{an} Le Prize ^{an} Li Prize ^{an} Li Prize ^{an} Li Prize ^{an} Sosset ¹² Li Ala Sosset ¹² Sobsetal Adenocarcinoma Li Ala Maintes ¹² Sosset ¹² Sosse ¹² Sosset ¹² Sosset ¹² Sosset ¹² Sosse ¹² Sosse ¹² Sosse ¹² Sosset ¹² Sos ¹² Sosse	Nygaard ⁹	53	25		0-76 (0-45=1-28)
Uthan 13 12 033 (0:36-189) Bosset ¹² 148 145 095 (0:73-127) Walkh ³ 29 32 074 (0:46-1:18) Burneister ²⁰ 44 48 066 (0:40-1:15) Lu ⁿ 80 80 055 (0:36-0:84) Le ⁿ 51 50 088 (0:48-1:62) Subtotal 498 467 080 (0:68-0:93) Heterogeneity χ^*-531 , df-8 (p-0:72); f-0% 088 (0:48-1:62) 088 (0:48-1:62) Test for overall effect: 2-2:90 (p-0:04) 055 (0:36-0:84) 056 (0:42-1:14) Makh ⁴⁴ 58 55 058 (0:38-0:88) Burmeister ²⁰ 80 77 094 (0:66-1:34) Vibat ³¹ 175 170 075 (0:59-0:95) Heterogeneity χ^*-311 , df-2 (p-0:21); f*-36% 120 075 (0:59-0:95) Test for overall effect: 2-2:40 (p-0:02) 303 312 057 (0:69-0:93) Combined results (pooled SCC and adenocarcinoma) 120 074 (0:69-0:93) 074 (0:59-0:93) Iterogeneity χ^*-90 , df-2 (p-0:01); F*-78% 128 067 (0:49-0:91) 077 (0:69-0:86) Itetoroverall effect: 2-2-4	Apinop ³⁹	35	34		0-80 (0-48=1-34)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Le Prise ²⁰	45	41		0-85 (0-50=1-46)
Walsh ¹⁹ 29 32 074 (0.46-1.18) Burmeister ¹⁰ 44 48 068 (0.40-1.15) Lue ¹¹ 80 80 055 (0.36-0.84) Lee ¹¹ 51 50 088 (0.48-1.62) Subtotal 498 467 0.80 (0.68-0.93) Heterogeneity: χ ¹ -573.1, df-8 (p=0.72); P=0% 0.80 (0.68-0.93) 0.80 (0.68-0.93) Adenocarcinoma Urba ¹⁰ 37 38 0.59 (0.42-1.14) Malsh ¹⁴ 58 55 0.58 (0.38-0.88) Burmeister ²¹ 80 77 0.94 (0.66-1.34) Subtotal 175 170 0.75 (0.59-0.95) Heterogeneity: χ ¹ -3.11, df-2 (p=0.21); P=3.6% 109 (0.74-1.59) 0.75 (0.59-0.95) Test for overall effect: Z-2.40 (p=0.02) 0.51 (1.80-0.68) 0.57 (0.459-0.93) Combined results (pooled SCC and adenocarcinoma) 0.57 (0.49-0.91) 0.74 (0.69-0.93) Test for overall effect: Z-2.62 (p=0.001); F=75% 128 0.67 (0.49-0.91) Subtotal 303 312 0.77 (0.69-0.86) Heterogeneity: χ ¹ =1.78, df=14 (p=0.21); F=22% 0.5 0.77 (0.69-0.86) Test for overall	Urba**	13	12		0-83 (0-36=1-89)
Burneitzer ¹⁷ 44 48 48 48 48 48 48 48 48 48	Bosset ¹²	148	145		0.96 (0.73=1.27)
Lurin 80 80 055 (0356-04) Lee'' 51 50 088 (0-48-162) Subtotal 498 467 080 (0-68-0-93) Heterogeneity: χ^*-531 , df=8 (p=0.72); F=0%. 080 (0-68-0-93) 080 (0-68-0-93) Adenocarcinoma Urba** 058 (0.38-0.68) 058 (0.38-0.68) Burneister** 80 77 0 075 (0.59-0-95) Heterogeneity: χ^*-311 , df=2 (p=0.21); f*-36% 175 170 0.75 (0.59-0-95) Test for overall effect: Z-2.40 (p=0.42) 075 036 0.35 (0.18-0.68) Mariette** 97 98 0.67 (0.49-0.91) 0.74 (0.59-0.93) Subtotal 303 312 0.74 (0.59-0.93) 0.74 (0.59-0.93) Subtotal 303 312 0.77 (0.69-0.86) 0.77 (0.69-0.86) Heterogeneity: $\chi^*-17.87$, df-14 (p=0.21); F=22% 0.2 0.5 1 2 5	Walsh ¹⁸	29	32	- _	0-74 (0-46=1-18)
$\begin{array}{c} Lev^{T} & 51 & 50 \\ Subtotal & 498 & 467 & & 088 (0.48-1.62) \\ Subtotal & 498 & 467 & & 088 (0.48-1.62) \\ Heterogeneity: \chi^{2}=531, di=8 (p=0.72); f=0s \\ Test for overall effect: Z-2:90 (p=0-004) \\ Adenocarcinoma & & & \\ Urba^{in} & 37 & 38 & & 069 (0.42-1.14) \\ Walsh^{4} & 58 & 55 & & 0.58 (0.38-0.88) \\ Burmeister^{iT} & 80 & 77 & & 0.58 (0.38-0.88) \\ Burmeister^{iT} & 80 & 77 & & 0.58 (0.46-1.34) \\ Subtotal & 175 & 170 & & 0.75 (0.59-0.95) \\ Heterogeneity: \chi^{2}=311, di=2 (p=0.21); l^{2}=36s \\ Test for overall effect: Z-2:40 (p=0.02) \\ \hline Combined results (pooled SCC and adenocarcinoma) \\ Tepper^{0} & 30 & 26 & & & & & & & & & & & & & & & & & $	Burmeister ²⁰	44	48		0-68 (0-40=1-15)
Subtotal 498 467 Heterogeneity: x ² -5-31, df-8 (p-0.72); f ² -0% Test for overall effect: Z-2.90 (p-0-004) Adenocarcinoma Urba** 37 38 Ocf9 (0-42-1-14) Walsh* 58 55 Our of the terogeneity: x ² -311, df-2 (p-0-21); f ² -36% Test for overall effect: Z-2.40 (p-0-02) Combined results (pooled SCC and adenocarcinoma) Tepper* 30 Variette** 97 98 Variette** 97 98 Variette** 176 188 Ocf7 (0-49-0-21); f ² -36% Test for overall effect: Z-2.40 (p-0-02); f ² -78% Test for overall effect: Z-2.62 (p-0-002) Total 976 949 Heterogeneity: x ² -17.87, df-14 (p-0-21); f ² -22% Test for overall effect: Z-4.55 (p-0-0001); f ² -72% Test for overall effect: Z-4.55 (p-0-0001); f ² -72% Test for overall effect: Z-4.55 (p-0-0001); f ² -72% Test for overall effect: Z-4.55 (p-0-0001); f ² -22% Test for overall effect: Z-4.55 (p-0-0001); f ² -28% Test for overall effect: Z-4.55 (p-0.0001); f ² -28% Tes	Lve	80	80	-	0-55 (0-36=0-84)
Heterogeneity: χ^1 -5;31, df-8 (p-0.72); l ² -0%. Test for overall effect: Z-2-90 (p-0.004) Adenocarcinoma Urba** 37 Burmeister** 80 Subtotal 175 Subtotal 175 Heterogeneity: χ^1 -3:11, df-2 (p-0.21); l ² -36%. Test for overall effect: Z-2-40 (p-0.02) Combined results (pooled SCC and adenocarcinoma) Tepper** 30 Aniette** 176 Subtotal 303 Subtotal 303 Subtotal 303 Subtotal 303 Test for overall effect: Z-2-26 (p-0.01); l ² -78%. Test for overall effect: Z-2-26 (p-0.01); l ² -78%. Test for overall effect: Z-2-62 (p-0.009) Total 976 949 0-77 (0-69-0-86) Heterogeneity: χ^2 -17.87, df-14 (p-0-21); l ² -22%. Test for overall effect: Z-2-55 (p-0.0001) 0-2 0-2 0-5 1	Leeu	51	50		0-88 (0-48=1-62)
Test for overall effect: Z-2-90 (p=0-004) Adenocarcinoma Urba ⁴⁹ 37 38 0-69 (0.42-1-14) Walsh ⁴⁴ 58 55 0-58 0-58 (0.38-0-88) Burmeister ²⁷ 80 77 0-94 (0.66-1-34) Subtotal 175 170 0-75 (0.59-0-95) Heterogeneity: χ^{2} -3-11, df-2 (p=0-21); l ² -36% Test for overall effect: Z-2-40 (p=0-02) Combined results (pooled SCC and adenocarcinoma) Tepper ⁹ 30 26 0-35 (0.18-0-68) Mariette ²¹ 97 98 0-5 0-5 0-5 0-5 0-77 (0.69-0-86) Heterogeneity: χ^{2} -9-09, df-2 (p=0-01); l ² -78% Test for overall effect: Z-2-26 (p=0-009) Total 976 949 0-77 (0.69-0-86) Heterogeneity: χ^{2} -17-87, df-14 (p=0-21); l ² -22% Test for overall effect: Z-4-55 (p=0-001) 0-2 0-5 1 2 0 0 0-2 0-5 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Subtotal	498	467	•	0-80 (0-68=0-93)
Adenocarcinoma Urba** 37 38 0-69 (0.42=1.14) 0.58 (0.38=0.88) 80 07 0.58 (0.38=0.88) 80 07 0.58 (0.38=0.88) 0.59 (0.42=1.14) 0.58 (0.38=0.88) 0.59 (0.42=1.14) 0.58 (0.38=0.88) 0.59 (0.42=1.14) 0.58 (0.38=0.88) 0.59 (0.59=0.95) Heterogeneity: y^*=3.11, df=2 (p=0.21); l*=36s Test for overall effect: 2-2-40 (p=0.02) Combined results (pooled SCC and adenocarcinoma) Tepper* 30 26 0-35 (0.18=0.68) 1.09 (0.74=1.59) Van der Gaast* 176 188 067 (0.49=0.91) 0-2 0-5 1 2 0 0-77 (0.69=0.48) Heterogeneity: y^*=3.03, df=2 (p=0.01); l*=78s Test for overall effect: 2-2.62 (p=0.009) Total 976 949 0-77 (0.69=0.48) Heterogeneity: y^*=17.87, df=1.4 (p=0.21); l*=22% Test for overall effect: 2-4.55 (p=0.0001) 0-2 0-5 1 2	Heterogeneity: χ²=5-31, df=8 (p=	0-72); P=0%		•	
Urba** 37 38 0.69 (0.42-1.14) Walsh*4 58 55 0.58 (0.38-0.88) Burmeister*7 80 77 0.94 (0.66-1.34) Subtotal 1.75 1.70 0.75 (0.59-0.95) Heterogeneity: χ*-3.11, df-2 (p=0.21); f*-36% 0.77 0.75 (0.59-0.95) Test for overall effect: Z-2.40 (p=0.02) 0.75 (0.49-0.91) 0.75 (0.49-0.91) Combined results (pooled SCC and adenocarcinoma) 0.93 (0.18-0.68) 0.93 (0.18-0.68) Mariette ¹³ 97 98 0.67 (0.49-0.91) van der Gaast ⁴⁰ 1.76 1.88 0.67 (0.49-0.91) Subtotal 303 312 0.74 (0.59-0.93) Heterogeneity: χ²-9.09, df-2 (p=0.01); l*-78% 0.77 (0.69-0.86) 0.77 (0.69-0.86) Total 976 949 0.77 (0.69-0.86) 0.77 (0.69-0.86) Heterogeneity: χ²-17.87, df-1.4 (p=0.21); l*-22% 0.5 1 2 5	Test for overall effect: Z=2-90 (p=	0-004)			
Walsh ⁴⁴ 58 55 0-58 (0-38-0-88) Burmeister ¹¹ 80 77 0-94 (0-66-1-34) Subtotal 175 170 0-75 (0-59-0-95) Heterogeneity: x ² -3:11, df-2 (p=0-21); l ² -36% 0-35 (0-18-0-68) 0-75 (0-59-0-95) Test for overall effect: Z-2-40 (p=0-02) 0-35 (0-18-0-68) 0-75 (0-59-0-95) Combined results (pooled SCC and adenocarcinoma) 0-75 (0-59-0-95) 0-35 (0-18-0-68) Mariette ¹² 97 98 0-67 (0-49-0-91) van der Gaast ⁴² 176 188 0-67 (0-49-0-91) Subtotal 303 312 0-74 (0-59-0-93) Heterogeneity: x ² -9.09, df-2 (p=0-01); l ² -78% 0-77 (0-69-0-86) 0-77 (0-69-0-86) Heterogeneity: x ² -17-87, df-14 (p=0-21); l ² -22% 0-5 1 2 Test for overall effect: Z-4,55 (p<0-0001)	Adenocarcinoma				
Burmeister ¹¹ 80 77 Burmeister ¹² 80 77 Subtotal 175 170 0-94 (0-66-1-34) Subtotal 175 170 0-75 (0-59-0-95) Heterogeneity: χ ² -3.11, df-2 (p-0.21); l ² -36% Test for overall effect: Z-2-40 (p-0-02) Combined results (pooled SCC and adenocarcinoma) Tepper ⁴⁰ 30 26 0-35 (0.18-0-68) Mariette ¹¹ 97 98 1-09 (0-74-1-59) van der Gaast ⁴² 176 188 0-67 (0-49-0-91) Subtotal 303 312 0-74 (0-59-0-93) Heterogeneity: χ ² -9.09, df-2 (p-0-01); l ² -78% Test for overall effect: Z-2-62 (p-0-009) Total 976 949 0-77 (0-69-0-86) Heterogeneity: χ ² -17-87, df-14 (p-0-21); l ² -22% Test for overall effect: Z-4-55 (p-0-001) 0-2 0-5 1 2 5	Urba**	37	38	_ _	0-69 (0-42=1-14)
Subtotal 175 170 0-75 (0-59-0-95) Heterogeneity: x²-3:11, df-2 (p-0.21); l²-36% 0-75 (0-59-0-95) 0-75 (0-59-0-95) Combined results (pooled SCC and adenocarcinoma) 0-35 (0.18-0-68) 0-35 (0.18-0-68) Tepper ⁶ 30 26 0-35 (0.18-0-68) Mariette ¹¹ 97 98 0-67 (0.49-0-91) Subtotal 303 312 0-67 (0.49-0-91) Subtotal 303 312 0-74 (0-59-0-93) Heterogeneity: x²-909, df-2 (p-0.01); l²-78% 0-77 (0-69-0-86) 0-77 (0-69-0-86) Total 976 949 0-77 (0-69-0-86) Heterogeneity: x²-17-87, df-14 (p-0:21); l²-22% 0-2 0-5 1 2	Walsh ¹⁴	58	55	-	0-58 (0-38=0-88)
Heterogeneity: χ^2 -3·11, df-2 (p-0·21); l ² -36% Test for overall effect: Z-2-40 (p-0·02) Combined results (pooled SCC and adenocarcinoma) 0-35 (0·18-0·68) Tepper ⁶⁷ 30 26 Mariette ¹¹ 97 98 van der Gazst ⁴⁷ 1.76 188 Subtotal 303 312 Heterogeneity: χ^2 -9-09, df-2 (p-0·01); l ² -78% 0-74 (0·59-0·93) Heterogeneity: χ^2 -17-87, df-14 (p-0·21); l ² -22% 0-77 (0·69-0·86) Heterogeneity: χ^2 -17-87, df-14 (p-0·21); l ² -22% 0-5 1 2	Burmeister ²²	80	77	_	0-94 (0-66=1-34)
Test for overall effect: Z=2-40 (p=0-02) Combined results (pooled SCC and adenocarcinoma) Tepper ⁶ 30 26 0-35 (0-18=0-68) Mariette ¹¹ 97 98 109 (0-74=1-59) van der Gaast ⁴² 176 188 0-67 (0-49=0-91) Subtotal 303 312 0-74 (0-59=0-93) Heterogeneity: χ ² =9-09, df=2 (p=0-01); P=78% Test for overall effect: Z=2-62 (p=0-009) Total 976 949 0-77 (0-69=0-86) Heterogeneity: χ ² =17-87, df=14 (p=0-21); P=22% Test for overall effect: Z=4-55 (p=0-0001) 0-2 0-5 1 2 5	Subtotal	175	170		0-75 (0-59=0-95)
Combined results (pooled SCC and adenocarcinoma) Tepper ⁶ 30 26 0-35 (0-18-0-68) Mariette ¹¹ 97 98 1-09 (0-74-1-59) van der Gaast ⁴⁰ 176 188 0-67 (0-49-0-91) Subtotal 303 312 0-74 (0-59-0-93) Heterogeneity: χ ² -9-09, df-2 (p-0-01); P-78% Test for overall effect: Z-2-62 (p-0-009) Total 976 949 0-77 (0-69-0-86) Heterogeneity: χ ² -17-87, df-14 (p-0-21); P-22% Test for overall effect: Z-4-55 (p-0-0001) 0-2 0-5 1 2 5	Heterogeneity: χ²=3·11, df=2 (p=	0-21); P=36%		•	
Tepper*8 30 26 0-35 (0:18-0:68) Mariette ¹¹ 97 98 1-09 (0:74-1:59) van der Gaast ⁴² 176 188 0-67 (0:49-0:91) Subtotal 303 312 0-74 (0:59-0:93) Heterogeneity: χ^2 -9-09, df-2 (p=0-01); P-78% 0-77 (0:69-0:86) 0-77 (0:69-0:86) Total 976 949 0-77 (0:69-0:86) Heterogeneity: χ^2 -17-87, df-14 (p=0-21); P-22% 0-5 1 2	Test for overall effect: Z=2-40 (p=	0-02)			
Mariette ¹¹ 97 98 109 (0-74-1-59) van der Gaast ⁴² 176 188 0-67 (0-49-0-91) Subtotal 303 312 0-74 (0-59-0-93) Heterogeneity: χ²-9-09, df-2 (p=0-01); P-78% Test for overall effect: Z-2-62 (p=0-009) Total 976 949 0-77 (0-69-0-86) Heterogeneity: χ²-17-87, df-14 (p=0-21); P-22% Test for overall effect: Z-4-55 (p=0-0001) 0-2 0-5 1 2 5	Combined results (pooled SCC a	and adenocarcinoma)			
van der Gaast ⁴⁴ Subtotal Subtotal Subtotal Subtotal Total Heterogeneity: χ²-9-09, df-2 (p=0-01); P=78% Test for overall effect: Z=2-62 (p=0-009) Total Heterogeneity: χ²-17-87, df-14 (p=0-21); P=22% Test for overall effect: Z=4-55 (p=0-0001) 0-2 0-5 1 2 5	Tepper ⁴⁸	30	26 🔺	_	0-35 (0-18-0-68)
Subtotal 303 312 Heterogeneity: χ²=9-09, df=2 (p=0-01); P=78% Test for overall effect: Z=2-62 (p=0-009) Total 976 949 Heterogeneity: χ²=17-87, df=14 (p=0-21); P=22% Test for overall effect: Z=4-55 (p=0-0001) 0-2 0-5 1 2 5	Mariette ²¹	97	98		1.09 (0.74=1.59)
Heterogeneity: χ²=9-09, df=2 (p=0-01); P=78% Test for overall effect: Z=2-62 (p=0-009) Total 976 949 Heterogeneity: χ²=17-87, df=14 (p=0-21); P=22% Test for overall effect: Z=4-55 (p=0-0001) 0-2 0-5 1 2 5	van der Gaast#	176	188		0-67 (0-49=0-91)
Test for overall effect: Z=2-62 (p=0-009) Total 976 949	Subtotal	303	312	•	0-74 (0-59=0-93)
Total 976 949 Heterogeneity: χ²-17-87, df-14 (p=0-21); P-22% Test for overall effect: Z=4-55 (p<0-0001) 0-2 0-5 1 2 5	Heterogeneity: χ²=9-09, df=2 (p=	0-01); P=78%		-	
Heterogeneity: x ² =17-87, df=14 (p=0-21); P=22% Test for overall effect: Z=4-55 (p<0-0001) 0-2 0-5 1 2 5	Test for overall effect: Z=2-62 (p=	0-009)			
Test for overall effect: Z=4-55 (p=0-0001) 0-2 0-5 1 2 5	Total	976	949	•	0-77 (0-69=0-86)
02 03 1 2 5	Heterogeneity: χ²=17-87, df=14 (g	p=0-21); P=22%		•	
	Test for overall effect: Z=4-55 (p=	0-0001)	0.2	0.5 1 2	5
use on wedness how we have the out the out the out the out the out of the out the out of	Test for subgroup differences: χ ² -	•0-35, df=2 (p=0-84), P=0%			

Sjoquist et al. Lancet Oncology 2011

Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: an updated meta-analysis

	Chemoradiotherapy (total)	Chemotherapy (total)		Hazard ratio (95% CI)
Individual trials				
Stahl ^{ak}	60	59		0-67 (0-41=1-08)
Burmeister ³⁵	39	36		0.96 (0.53=1.74)
Subtotal	99	95		0-77 (0-53-1-12)
Heterogeneity: χ²=0-84, df=1 (p=0	-36); ^µ =0%		-	
Test for overall effect: Z=1-36 (p=0-	17)			

Interpretation This updated meta-analysis provides strong evidence for a survival benefit of neoadjuvant chemoradiotherapy or chemotherapy over surgery alone in patients with oesophageal carcinoma. A clear advantage of neoadjuvant chemoradiotherapy over neoadjuvant chemotherapy has not been established. These results should help inform decisions about patient management and design of future trials.

Total	1079	1141	•		0-88 (0-76-1-01)	
Heterogeneity: χ²=1-38, df=2 (p=0-50)	;P-0%					
Test for overall effect: Z=1-83 (p=0-07)		0-2	0.5	1 2	5	
Test for subgroup differences: χ²=0-53, df=1 (p=0-46); l²=0%		Favou	Favours chemoradiotherapy			

Sjoquist et al. Lancet Oncology 2011

Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer

Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial

-368 patients with resectable tumor underwent randomization,

178 in **RT-CT Surgery** group and 188 in the **Surgery alone** group

-Adenocarcinoma 75% - Squamous carcinoma 25%

-CT regimen: Carboplatin and Paclitaxel – **RT schedule: 4150** cGy in 23 fractions, 5 days per week

Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial

Sacro Cuore Don Calabria

median FUP: 84 months

Interpretation Long-term follow-up confirms the overall survival benefits for neoadjuvant chemoradiotherapy when added to surgery in patients with resectable oesophageal or oesophagogastric junctional cancer. This improvement is clinically relevant for both squamous cell carcinoma and adenocarcinoma subtypes. Therefore, neoadjuvant chemoradiotherapy according to the CROSS trial followed by surgical resection should be regarded as a standard of

care for patients with resectable locally advanced oesophageal or oesophagogastric junctional cancer.

Median OS:

SCC pts: 81.6 months in **RT-CT plus surgery** vs and 21.1 in **surgery alone ADC** pts: 43.2 months in **RT-CT plus surgery** vs 27.1 months in **surgery alone**

J. Shapiro et al.Lancet Oncology 2015; 16: 1090–98

Treatment of Locally Advanced Inoperable Esophageal Cancer

RTOG 8501: Randomized121 unresectable cases with squamous carcinoma or adenocarcinoma of esophagus to CT+RT or RT alone

-RT dose: 6400 cGy in 32/fx in RT alone arm vs 5000 cGy ip?

is superior to RT alone -CT regimen: 2 cycles of Cisplatin/5FU during

Cisplatin/5FU

-Improved median surviva versus 8.9 months (p = 0.001)

efinitive CT -2-year OS (38 ver ecurrence (16 versus 24%) – DM rate (22 versus 38%) all favor CT+P -Update S: 25% in CT+RT versus 0% in RT alone

RT DOSES AND FRACTIONATION

✓ PRE-OPERATIVE RT: 45-50 Gy (1.8-2 Gy/die)

✓ **DEFINITIVE** RT: **50-50.4 Gy** (1.8-2 Gy/die)

> higher doses (60-66 Gy) may be appropriate for tumors of the cervical esophagus,

especially when surgery is not planned.

RADIATION THERAPY TECHNIQUE

- Patient immobilization in a supine position with both arms up during planning and treatment
- 2. Simulation: CT scan of chest and abdomen (5 mm thick slices) with IV and oral contrasts
- 3. **PET/CT scan** for accurate delineate the Gross tumor volume (GTV)
- 4. IMRT vs 3DCRT: superior conformity, homogeinety and reduction RT dose to lungs and heart

RADIATION THERAPY TECHNIQUE

TIMING OF SURGERY AFTER RT-CT

✓ The typical interval, 4 to 7 weeks, with the intent of allowing resolution of acute inflammation and allowing for tumor regression while minimizing the chronic fibrotic changes in the surgical field

✓ Most tumors regress slowly after RT...

✓ Increasing the interval between RT-CT and surgery may allow the tumor to continue to regress, thereby improving resectability, and increase the chance of observing pathologic complete response (pCR)

✓ Delaying surgery beyond six to seven weeks would likely impact the clinical outcome negatively of those who have residual cancer after RT-CT

Tessier et. al Ann ThoracSurg 2014

- ✓ Multi-modality treatment is indicated for cancer of esophagus and GEJ
- Neoadjuvant (preoperative) RT CT is now preferred for locally advanced
- resectable cancer of esophagus/GEJ
- ✓ Definitive RT CT is used for locally advanced inoperable cancer of
- esophagus or cervical tumors
- ✓ Multidisciplinary discussion is crucial to define therapeutic strategy

THANKS FOR ATTENTION!