

Ospedale Classificato Equiparato Sacro Cuore - Don Calabria Presidio Ospedaliero Accreditato - Regione Veneto

Incontri di aggiornamento del Dipartimento Oncologico

Il carcinoma mammario metastatico HR+/HER2- negativo: i nuovi algoritmi alla luce delle nuove opzioni terapeutiche

> Responsabile Scientifico: Dott.ssa Stefania Gori

Lunedì 16 aprile 2018

SEDE: *"Centro Formazione e Solidarietà"* Ospedale *"Sacro Cuore - Don Calabria"* Via Don Angelo Sempreboni, 5 - 37024 Negrar (Verona)

Il sottogruppo metastatico HR+/HER2-: quali trattamenti sistemici nel 2018?

Dr. Monica Turazza

Oncologia Medica - Negrar

«GOOD CLINICAL PRACTICE» IN HR+/HER2-METASTATIC BREAST CANCER

- Treatment choice based on type of adjuvant therapy, disease-free interval, extent of recurrent disease
- Treatment balance between efficacy and toxicity (chronic disease)
- Hormone therapy recommended as initial treatment except in case of imminent life-threatering disease or in rapid visceral recurrence during adjuvant endocrine therapy
- Treatment administered until there is unequivocal evidence of disease progression (documented by imaging, clinical examination, disease-related symptoms)
- Patients should be encoureged to consider enrolling in clinical trials

Biomarchers changement between primary and recurrent/metastatic tumor

Necessity to re-testing on recurrent/metastatic disease Discordance caused by analytical variability Positivity don't indicate funtionality of receptors

Aurilio et al, EJC 2015

ER-Signaling and Cellular Signaling Network

Adapted from: Johnston S. Clin Cancer Res. 2005;11(2 Pt 2):889S-899S.

PRINCIPLES OF ENDOCRINE THERAPY IN BREAST CANCER

Endocrine Trials in First-Line MBC

(Menopausal status)

Al vs Tamoxifen

Trial	Treatment	No. Patients	TTP/PFS, mo	ORR,%	CBR,%
Bonneterre et al ^[a]	Anastrozole vs	340	8.2	32.9	56.2
	tamoxifen	328	8.3	32.6	55.5
Nabholtz et al ^[a]	Anastrozole vs	171	11.1	21.1	59.1
	tamoxifen	182	5.6	17.0	45.6
Mouridsen et al ^[a]	Letrozole vs	453	9.4	32	50
	tamoxifen	454	6.0	21	38
Paridaens et al ^[a]	Exemestane vs	182	9.9	46	NR
	tamoxifen	189	5.8	31	NR
Chernozemsky	Exemestane vs	83	12	37.4	79.5
et al ^[a]	tamoxifen	84	8.3	29.8	78.6

a. Cardoso F e al. Cancer Treat Rev. 2013; 39:457-65

MECHANISMS OF ENDOCRINE RESISTANCE In HR-positive METASTATIC BREAST CANCER

- Activating mutations of ESR1
- Ligand independent ER activation through ER phosphorylation
- Up-regulation of alternative signaling pathways

Acquired Somatic Mutations: ESR1

ESR1 mutations are acquired/selected during treatment with aromatase inhibitors

Zhang QX, et al. *Clin Cancer Res.* 1997;3(12 Pt 1):2329-2335. Li S, et al. *Cell Rep.* 2013;4(6):1116-1130. Toy W, et al. *Nat Genet.* 2013;45(12):1439-1445. Robinson DR, et al. *Nat Genet.* 2013;45(12):1446-1451. Merenbakh-Lamin K, et al. *Cancer Res.* 2013;73(23):6856-6864. Jeselsohn R, et al. *Clin Cancer Res.* 2014;20(7):1757-1767.

ESR1: gene encoding the ER \rightarrow ESR1-mutated change the function of ER leading to resistance

ESR1 Mutations Linked With Resistance To Aromatase Inhibitors

ESR1 mutations result in constitutively activated ER and endocrine resistance \rightarrow

SERD more sensitive than AI or SERM

Mut, mutated; SERD, selective estrogen receptor down-regulator; SERM, selective estrogen receptor modulators; WT, wild type Schiavon G, et al. *Sci Transl Med.* 2015;7(313):313ra182. Spoerke JM, et al. *Nat Commun.* 2016;7:11579.

Dose Effect of Fulvestrant

Dose effect for fulvestrant with doses >250 mg more effective for ER down-regulation \rightarrow Oral SERDs might allow higher doses for more complete ER degradation

Robertson JF, et al. Cancer Res. 2001;61(18):6739-6746. DeFriend DJ, et al. Cancer Res. 1994;54(2):408-414.

CONFIRM Phase 3, Double-Blind Trial

Compared dose of fulvestrant 500 mg (n.362) vs 250 mg (n. 374)

- PFS was significant longer for fulvestrant 500 mg: HR=0.80; 95%CI:
 0.68, 0.94; p=0.06 or a 20 % reduction for progression
- ORR was similar for fulvestrant 500 mg and 250 mg (9.1% vs 10.2% respectively)
- CBR was 45.6% for fulvestrant 500 mg and 39.6% for fulvestrant 250

Di Leo et al J Clinc Oncol 2010;28: 4594-4600

FALCON trial: anastrozole vs Fulvestrant in HR+/HER- advanced breast cancer

- Randomized, double-blind, multicenter, phase 3 trial
- Postmenopausal women with inoperable locally advanced or metastatic ER-positive/HER2negative breast cancer (N = 462)
- No prior hormone therapy
- Primary endpoint: PFS
- Secondary endpoints: OS, ORR, DOR, EDOR, CBR, DOCB, EDOCB, HRQoL, safety

Patients allowed 1 line of chemotherapy

Robertson J et al. Lancet 2016;388:2997-3005

With Visceral Disease

Time, mo

Adapted from: Johnston S. Clin Cancer Res. 2005;11(2 Pt 2):889S-899S.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Everolimus in Postmenopausal Hormone-Receptor–Positive Advanced Breast Cancer

José Baselga, M.D., Ph.D., Mario Campone, M.D., Ph.D., Martine Piccart, M.D., Ph.D., Howard A. Burris III, M.D., Hope S. Rugo, M.D., Tarek Sahmoud, M.D., Ph.D., Shinzaburo Noguchi, M.D., Michael Gnant, M.D., Kathleen I. Pritchard, M.D., Fabienne Lebrun, M.D., J. Thaddeus Beck, M.D., Yoshinori Ito, M.D., Denise Yardley, M.D., Ines Deleu, M.D., Alejandra Perez, M.D., Thomas Bachelot, M.D., Ph.D., Luc Vittori, M.Sc., Zhiying Xu, Ph.D., Pabak Mukhopadhyay, Ph.D., David Lebwohl, M.D., and Gabriel N. Hortobagyi, M.D.

N ENGLJ MED 366;6 NEJM.ORG FEBRUARY 9, 2012

BOLERO-2: Everolimus + Exemestane vs Placebo + Exemestane

- Randomized (2:1 ratio), double-blind, phase 3 study
- Patients with HR+ advanced breast cancer who had recurrence or progression on prior AI therapy in adjuvant setting (N = 724)
- Stratified according to presence of visceral metastasis and previous sensitivity to endocrine therapy
- Primary endpoint: PFS
- Secondary endpoints: OS, response rate, safety

Figure 1. Kaplan-Meier Plot of Progression-free Survival.

Panel A shows progression-free survival on the basis of local assessment of radiographic studies, and Panel B shows central assessment. PFS denotes progression-free survival.

Subgroup	NO.	Hazard Ratio (95% CI)
All patients	724	→
Age		-
<65 yr	449	⊢∎
≥65 yr	275	⊢_₩1
Region		
Asia	137	••
Europe	275	·∎
North America	274	⊢ − ∎−−1
Other	38	••
Baseline ECOG performance status		i i i i i i i i i i i i i i i i i i i
0	435	⊢-∎
1 or 2	274	
Sensitivity to previous hormonal therapy		
Yes	610	⊢∎→
No	114	⊢
Visceral metastasis		
Yes	406	⊢-∎1
No	318	▶
Measurable disease		
Yes	500	⊢∎-1
No	224	⊢
No. of previous therapies		
1	118	·
2	217	⊢ ■1
≥3	389	⊢ ∎→
Most recent therapy		
Aromatase inhibitor	532	⊢∎
Antiestrogen	122	→
Other	70	·•
Purpose of most recent therapy		
Treatment of advanced or metastatic disease	586	⊢∎→
Adjuvant therapy	138	
Previous treatment with fulvestrant		
Yes	119	• • • · · ·
No	605	⊢∎
Previous chemotherapy		
Yes		
Neoadjuvant or adjuvant therapy only	306	⊢
Treatment of metastatic disease (with or without neoadjuvant or adjuvant therapy)	186	—
No	232	
Positive status for progesterone receptor		
Yes	523	⊢∎→
No	184	
	0	1 0.3 0.5 1.0

Figure 2. Consistency of Results for Progression-free Survival across the Various Subgroups.

Scores for Eastern Cooperative Oncology Group (ECOG) performance status range from 0 to 5, with 0 indicating that the patient is fully active, 1 indicating that the patient is restricted in physically strenuous activity but is ambulatory and able to carry out work of a light or sedentary nature, and 2 indicating that the patient is ambulatory and capable of all self-care but unable to work. The number of patients may not add up to 724 owing to missing baseline data. The size of each square is proportional to the number of patients in the subgroup. The data are shown on a semi-logarithmic scale.

Table 2. Adverse Events Irrespec	tive of Relationship to Study:	Treatment (with at Least	10% Incidence
in the Everolimus-Exemestane	Group).		

Adverse Event	Everolimus and Exemestane (N = 482)		Placeb	o and Exem (N=238)	estane	
	Any Event	Grade 3 Event	Grade 4 Event	Any Event	Grade 3 Event	Grade 4 Event
			peri	cent		
Stomatitis	56	8	0	11	1	0
Rash	36	1	0	6	0	0
Fatigue	33	3	<1	26	1	0
Diarrhea	30	2	<1	16	1	0
Decreased appetite	29	1	0	10	0	0
Nausea	27	<1	<1	27	1	0
Cough	22	1	0	11	0	0
Dysgeusia	21	<1	0	5	0	0
Headache	19	<1	0	13	0	0
Decreased weight	19	1	0	5	0	0
Dyspnea	18	4	0	9	1	<1
Arthralgia	16	1	0	16	0	0
Anemia	16	5	1	4	<1	<1
Epistaxis	15	0	0	1	0	0
Vomiting	14	<1	<1	11	<1	0
Peripheral edema	14	1	0	6	<1	0
Pyrexia	14	<1	0	6	<1	0
Aspartate aminotransferase level increased	13	3	<1	6	1	0
Constipation	13	<1	0	11	<1	0
Hyperglycemia	13	4	<1	2	<1	0
Pneumonitis	12	3	0	0	0	0
Thrombocytopenia	12	2	1	<1	0	<1
Asthenia	12	2	0	3	0	0
Alanine aminotransferase level increased	11	3	<1	3	2	0
Pruritus	11	<1	0	3	0	0
Insomnia	11	<1	0	8	0	0
Back pain	11	0	0	8	1	0

CDKs and Their Cyclin Regulatory Subunits

Aleem E, Arceci RJ. Front Cell Dev Biol. 2015;3:16.

DRUGS AVAILABLE IN CLINICAL PRACTICE

	FDA (USA)	EMA (EUROPE)	AIFA (ITALY)
Palbociclib	X	X	X
Ribociclib	X	X	/
Abemaciclib	Х	/	/

(up date april 2018)

CDK 4 and 6 Inhibitors for the Treatment of HR-Positive, HER2-Negative Breast Cancer

Setting	Trial	Arm	Median PFS (mo)	Hazard Ratio (95% Cl)
Endocrine	ΡΔΙ ΟΜΔ-2[]	Palbociclib + letrozole	24.8	0.58 (0.46, 0.72);
sensitive		placebo + letrozole	14.5	P < .001
No prior	MONALEESA 2[b.c]	Ribociclib + letrozole	25.3	0.57 (0.46, 0.70);
systemic	WIONALLESA-2	placebo + letrozole	16.0	$P = 9.63 \times 10^{-8}$
treatment for advanced disease	MONARCH-3 ^[d,e]	Abemaciclib + anastrozole/letrozole	Not reached	0.54 (0.41, 0.72); <i>P</i> = .000021
		placebo + anastrozole/letrozole	14.7	
Endocrine resistant	PALOMA-3 ^{[f,g]*}	Palbociclib + fulvestrant	11.2	0.50 (0.40, 0.62);
Relapse or disease progression on	THEORIN'S	placebo + fulvestrant	4.6	<i>P</i> < .0001
	MONARCH-2 ^{[h]**}	Abemaciclib + fulvestrant	16.4	0.55 (0.45, 0.68);
therapy	MONANCI 2	placebo + fulvestrant	9.3	<i>P</i> < .001

*Disease progression while on or within 12 months after completion of adjuvant endocrine therapy, or while on or within 1 month after endocrine therapy in the advanced setting; 1 prior line of CT allowed

**Disease progression while on or within 12 months after completion of adjuvant endocrine therapy or while on first line endocrine therapy for metastatic disease

a. Finn RS, et al. N Engl J Med. 2016;375:1925-1936. b. Kisquali (ribociclib) PI. c. Hortobagyi G, et al. ASCO 2017; Abstract 1038. d. Di Leo A, et al. ESMO 2017. Abstract 2360. e. Goetz et al. J Clin Oncol. 2017;35:3638-3646. f. Ibrance (palbociclib) PI. g. Turner N, et al. SABCS 2016. Abstract P4-22-06. h. Sledge GW Jr, et al. J Clin Oncol. 2017;35:2875-2884.

CDK 4 and 6 Inhibitors: Differences in Target and Dosing Regime

- Palbociclib has equivalent CDK4/cyclin D3 and CDK6/cyclin D1 potency, while both ribociclib and abemaciclib are significantly more potent toward CDK4/cyclin D3 (ribociclib is 5-fold more potent, abemaciclib is 9-fold^[a])
 - This may have important implications in terms of efficacy and toxicity

CDK K _i (nM)	Palbociclib	Ribociclib	Abemaciclib
CDK1/cyclinA ₂	>1,400	>1,400	330 ± 90
CDK2/cyclinE ₁	>2,500	>2,500	150 ± 60
CDK4/cyclinD ₃	0.26 ± 0.03	0.53 ± 0.08	0.07 ± 0.01
CDK5/p35	>2,000	>2,000	86 ± 12
CDK6/cyclinD ₁	0.26 ± 0.07	2.3 ± 0.3	0.52 ± 0.17
CDK7/cyclinH/MAT1	>2,000	>2,000	220 ± 10
CDK9/cyclinT ₁	150 ± 10	190 ± 20	4.1 ± 1.3

Dosing:

- Palbociclib and ribociclib: intermittent; 3 weeks on, 1 week off, once daily^[b,c]
- Abemaciclib: continuous regimen, once daily^[c]

a. Chen P, et al. *Mol Cancer Ther*. 2016;15:2273-2281. b. Ibrance (palbociclib) PI 2017. c. Kisqali (ribociclib) PI 2017; d. Verzenio (abemaciclib) PI 2017.

Dosing

Palbociclib, Ribociclib: intermittent 3 weeks on 1 week off, once daily Abemaciclib: continuous regimen once daily

Target

Palbociclib, Ribociclib target CDK 4 and 6 in similar way Abemaciclib: target CDK 4 at a rate of 14 times higher versus CDK 6

Patients population (Goetz et al SABCS 2017, Abs G56-02)

Abemaciclib in combination with endocrine treatment offered more benefit in ORR and PFS i high-risk clinical characteristics such as liver metastases, progesterone receptors-negative tumors, high grade tumors, short DFS from adjuvant therapy

CDK 4 and 6 Inhibitors: Incidence of Neutropenia

- Hematological AEs are higher in all trials with CDK 4 and 6 inhibitors, compared to endocrine therapy alone
- The incidence of febrile neutropenia is low (<2%)^[a-c]

	Palbociclib ^[a]		Ribociclib ^[b]		Abemaciclib ^[c,d]	
	Any Grade	Grade 3/4	Any Grade	Grade 3/4	Any Grade	Grade 3/4
Neutropenia, %	79.5	56.1/10.4	74.3	49.7/9.6	87.7	22.3/4.6

a. Finn RS, et al. *N Engl J Med*. 2016;375:1925-1936; b. Hortobagyi G, et al. ASCO 2017. Abstract 1038; c. Di Leo A, et al. ESMO 2017. Abstract 2360; d. Goetz et al. *J Clin Oncol*. 2017;35:3638-3646.

Non-Hematological Side Effects Associated With CDK 4 and 6 Therapy

Non-hematological AEs are higher in all trials with CDK 4 and 6 inhibitors, compared to endocrine therapy alone^[a-d]

- Mostly grade 1 and 2; rarely grade 3
- Nausea, vomiting, fatigue
- Alopecia: 15% to 30%, rarely above grade 1
- Diarrhea: frequent with abemaciclib, 9% grade 3/4

a. Finn RS, et al. *N Engl J Med*. 2016;375:1925-1936; b. Hortobagyi G, et al. ASCO 2017. Abstract 1038; c. Di Leo A, et al. ESMO 2017. Abstract 2360; d. Goetz et al. *J Clin Oncol*. 2017;35:3638-3646.

Other Side Effects Associated With CDK 4 and 6 Therapy

Liver enzyme elevation with ribociclib and

abemaciclib^[a-c]

• AST/ALT: 4%-7%, grade 3/4

Blood creatinine with abemaciclib^[b,c]

10% to 20% with abemaciclib, rarely grade 3

QTc interval prolongation with ribociclib^[a]

- 3% grade 2
- 0.3% grade 3 (>500 ms prolongation)

a. Hortobagyi G, et al. ASCO 2017; Abstract 1038. b. Di Leo A, et al. ESMO 2017. Abstract 2360. c. Goetz et al. J Clin Oncol. 2017;35:3638-3646.

Time to Chemotherapy From Randomization

Finn RS, et al. J Clin Oncol. 2017;35(suppl): Abstract 1001.

(Paloma-study: up date from ASCO 2017)

Post-Study Systemic Therapies

	PAL + LET [N = 80]	LET [N = 79]
Any post-study systemic therapy, n (%)	63 (83)	70 (89)
Post-study systemic therapy agents, n (%)		
Anti-hormonal therapy	50 (63)	58 (73)
Non-steroidal aromatase inhibitor	14 (18)	20 (25)
Steroidal aromatase inhibitor	21 (26)	28 (35)
Fulvestrant	27 (34)	34 (43)
Tamoxifen	11 (14)	17 (22)
Chemotherapy	47 (59)	51 (65)
Anthracyclines	15 (19)	22 (28)
Capecitabine	27 (34)	33 (42)
Gemcitabine	4 (5)	8 (10)
Taxanes	34 (43)	31 (39)
Vinorelbine	12 (15)	6 (8)
Other	19 (24)	19 (24)
mTOR inhibitor	12 (15)	13 (16)
Blinded therapy	2 (3)	5 (6)
Palbociclib	1 (1)	2 (3)

mTOR, mammalian target of rapamycin

Finn RS, et al. J Clin Oncol. 2017;35(suppl): Abstract 1001.

Quantitative ER and PR Results Among Long-Term Responders

Mean H-score by central laboratory analysis was calculated using the fluorescence in situ hybridization method. Error bars represent standard deviation. ER, estrogen receptor; PR, progesterone receptor; SD, standard deviation

Cristofanilli M, et al. J Clin Oncol. 2017;35(suppl): Abstract 1050.

Conclusion: Hormone receptor status at baseline NOT PREDICTIVE for long-term benefit

Predicting Sensitivity to Palbociclib With Early Circulating Tumor DNA Dynamics in the PALOMA-3 Trial

Abstract 1018

O'Leary B, Hrebien S, Morden JP, Beaney M, Liu Y, Bartlett CH, Koehler M, Cristofanilli M, Garcia-Murillas I, Bliss J, Turner NC

Aims and Methods

Aims

- To assess whether early dynamic changes in the abundance of PIK3CA mutation would predict PFS in patients treated with palbociclib + fulvestrant.
- To assess clonal change in ESR1 mutations in endocrine resistant breast cancer on treatment with palbociclib and fulvestrant.

Methods

- Plasma samples were prospectively collected in PALOMA-3 for ctDNA analysis at baseline, cycle 1 day 15 (D15) and end of treatment (EOT).
- Mutation status for both PIK3CA was assessed at baseline, day 15 and related to
 progression-free survival. Harrell's c-index was used to optimize a cut-off to predict
 PFS with early ctDNA dynamics.
- ESR1 mutation status was assessed for clonal changes through treatment.

O'Leary B, et al. J Clin Oncol. 2017;35(suppl): Abstract 1018.

(Up date from ASCO 2017)

Aims and Methods

Aims

- To assess whether early dynamic changes in the abundance of PIK3CA mutation would predict PFS in patients treated with palbociclib + fulvestrant.
- To assess clonal change in ESR1 mutations in endocrine resistant breast cancer on treatment with palbociclib and fulvestrant.

Methods

- Plasma samples were prospectively collected in PALOMA-3 for ctDNA analysis at baseline, cycle 1 day 15 (D15) and end of treatment (EOT).
- Mutation status for both PIK3CA was assessed at baseline, day 15 and related to
 progression-free survival. Harrell's c-index was used to optimize a cut-off to predict
 PFS with early ctDNA dynamics.
- ESR1 mutation status was assessed for clonal changes through treatment.

O'Leary B, et al. J Clin Oncol. 2017;35(suppl): Abstract 1018.

Palbociclib Suppresses ctDNA After 15 Days Treatment

 The circulating DNA ratio (CDR) was defined as the ratio of aggregate day 15 mutant copies/ml relative to day 1 mutant copies/ml.

 Palbociclib + fulvestrant suppressed day 15 PIK3CA ctDNA levels to a greater extent than placebo + fulvestrant (P<.0001).

ESR1 Mutant Clones at End of Treatment

 ESR1 mutant clones were more frequently undetectable at end of treatment (25.8% ESR1 mutations undetectable 8/31, vs 2.6% for PIK3CA mutations, 1/38, P = .004).

Defining Endocrine Sensitivity/Resistance With Adjuvant Treatment

progression-free survival; Tx, treatment

Finn RS, et al. N Engl J Med. 2016;375(20):1925-1936. Hortobagyi GN, et al. N Engl J Med. 2016;375(18):1738-1748. Robertson JFR, et al. Lancet. 2016;388(10063):2997-3005.

Abemaciclib for the Treatment of Brain Metastases (BM) Secondary to Hormone Receptor Positive (HR+), HER2-Negative Breast Cancer

Abstract 1019

Tolaney SM, Lin NU, Thornton D, Klise S, Costigan TM, Turner PK, Anders CK

Background: Abemaciclib can crosss the blood-brain barrier

(ASCO 2017)

Study Design

An open-label phase II study of abemaciclib in patients with brain metastases secondary to HR+ breast cancer, NSCLC, or melanoma (NCT02308020)

BOR, best overall response; CBR, clinical benefit rate (CBR = CR + PR + SD ≥ 6 months); DoR, duration of response (DoR = CR+PR); pts, patients; OIRR, objective intracranial response rate (OIRR = CR + PR); PFS, progression-free survival; PK, pharmacokinetics; RANO-BM, response assessment in neuro-oncology brain metastases

Tolaney SM, et al. J Clin Oncol. 2017;35(suppl): Abstract 1019

Key Inclusion Criteria for Part B

- Brain metastases secondary to HR+/HER2- breast cancer
- ≥1 new or not previously irradiated measurable metastatic brain lesion per RANO-BM criteria or a progressive previously irradiated metastatic brain lesion (per treating investigator)
- Completion of local and systemic therapies (except as outlined below) ≥14 days prior to initiation of abemaciclib
- May continue receiving endocrine therapy if peripheral disease has remained stable ≥3 months and CNS disease progression has occurred while on same therapy
- Stable or decreasing dose of corticosteroid ≥7 days prior to baseline Gd-MRI
- KPS ≥70
- Any number/type of prior therapies
- Peripheral metastatic disease is allowed but not required

KPS, Karnofsky performance status; Gd-MRI, gadolinium-enhanced magnetic resonance imaging

Baseline Patient Characteristics

	N=23
Median age (range)	52.0 (35 - 69)
Age \geq 65 years, n (%)	5 (21.7)
ER (+), n (%)	23 (100)
ER (+), PR (+), n (%)	15 (65.2)
ER (+), PR (-), n (%)	8 (34.8)
KPS, n (%)	
≥ 90	14 (60.9)
80	8 (34.8)
70	1 (4.3)

Baseline CNS Target Disease

	N=22ª
Target CNS Lesions	
Number of lesions, median (range), n	1.5 (1 - 5)
1 lesion, n (%)	12 (54.5)
2 lesions, n (%)	5 (22.7)
\geq 3 lesions, n (%)	5 (22.7)
Sum LD, median (range), mm	27 (10 - 101)
Patients with Prior Therapy for Target CNS Lesions, n (%)	
Prior Surgery	1 (4.5)
Prior WBRT	10 (45.5)

Prior SRS 6 (27.7)

*One patient was enrolled without a target CNS lesion (< 5 mm in perpendicular diameter). SRS, stereotactic radiosurgery; WBRT, whole brain radiation therapy.

RANO-BM Criteria

RANO-BM, response assessment in neuro-oncology brain metastases

Criterion	CR	PI	PR		SD	F	<u>م</u>
Target lesions	None	None ≥30% decrease in sum LD relative to baseline		<30% re bas <20% in relat	% decrease elative to seline but % increase sum LD ive to nadir	≥20% increa relative t addition increase of 2 must inc absolute va	se in sum LD o nadir. In to relative 20%, ≥1 lesion crease by alue ≥5 mm*
		Pa	Res tient Dis	posi	<mark>S</mark> tion in Par	t B	
For	All Patients	Enrolled		Stag	ge 1		
	33ª enro	olled		23 enrolled			
32 treated (Safety Population) (abemaciclib 200 mg BID)		(Efficience) (abem	23 trea cacy Po aciclib 2	ated pulation) 00 mg BID)	20 evaluable (0 3 non-evaluable	DIRR) e (OIRR)	
Reasons for discontinuation ^{a,c} : 4 adverse events (diarrhea, renal failure, neutropenia, GGT increased) 2 death due to clinical progression 19 progressive disease 1 withdrawal by patient		Reasons fo 4 adverse e failure, neu 2 death due 15 progress	er discont events (di tropenia, e to clinic sive disea	inuation ^{a,c} : iarrhea, renal GGT increased) al progression ase	Reasons for 3 no 3 adverse events failure, neutroper	on-evaluable ^b : (diarrhea, renal hia)	

*At the time of data cut-off on 11OCT2016

^bPatients were non-evaluable if discontinued due to adverse events prior to post-baseline tumor assessment.

clncludes patients who were off treatment as well as the patients who were enrolled but never treated

GGT, gamma glutamyl transferase

The efficacy population includes Stage 1 patients only.

The safety population included all patients enrolled (stage 1 + stage 2) who had received at least one dose of treatment at the time of the analysis.

CNS Response^a Summary^b

■Response criteria per RANO-BM; ▶6 patients had no post-baseline tumor measurements and therefore were not included in this waterfall plot.
Patients with SD ≥ 6 months are included in the number of patients with SD.

Overall^b median PFS: 4.04 months

Clinical Trials Performed in U.O Oncologia - Negrar

MONARCH 3 - Protocol 13Y-MC-JPBM (b)

A randomized placebo-controlled, phase III study of nonsteroidal aromatase inhibitors (anastrozoleor letrozole) plus LY2835219, a CDk 4/6 inhibitor or placebo in postmenopausal women with hormone receptor-positive, HER2-negative, locoregionally recurrent or metastatica breast cancer with no prior systemic therapy in this disease setting.

Primary objective: to compare treatment with LY2835219 plus NSAI therapy vs placebo+NSAI in PFS

Next-MONARCH – Protocol 13Y-MC-JPCG

A randomized open-label, phase 2 study of abemaciclib plus tamoxifen or abemaciclib alone in women with previously treated hormone receptor-positive, metastatico breast cancer, HER2-negative. **Primary objective**: to evaluate the efficacy in term of PFS in patients with MBC for abemaciclib 150q12H+TAM, Abemaciclib 150Q12H, Abemaciclib 200q12H+loperamide

COMPLEEMENT 1 – LEE011 (ribociclib)

An open-label, multicentric, phase IIIb study to assess the safety and efficacy of ribociclib (LEE011) in combination with letrozole for the treatment of **men** and **pre**/postmenopausal women with hormone receptor-positive HER2-negative advanced breast cancer with no prior therapy for advanced disease . **Primary objective**: to evaluate safety and efficacy in men and pre/postmenopausal women in TTP, ORR,

CBR.

Bioltalee – CLEE011AIT01

A phase IIIb, open-label, local multicenter study of the molecular features of postmenopausal women with hormone receptor-positive HER2-negative advanced breast cancer on first-line treatment with ribociclib and letrozole **Primary objective**: to identify circulating tumora Dna (ctDNA) alterations, how to evolve, and evaluate their possible association with clinical outcome.