SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Unità Sanitaria Locale della Romagna

Checkpoint inhibitors as the new standard of care in the II line setting of NSCLC

Chiara Bennati AUSL della Romagna Ravenna, Italy

Early studies suggested superiority of immunotherapy versus standard of care in pretreated NSCLC

Nivolumab in all comers

Nivolumab in squamous

- 54% receiving ≥3 prior therapies
- 57% non-squamous histology

• ≥2 prior systemic therapies

Early studies suggested superiority of immunotherapy versus standard of care in pretreated NSCLC

Pembrolizumab

Atezolizumab

Activity of second line therapy was low in NSCLC

Docetaxel	Pemetrexed	Erlotinib
5.0-12.0	7.1-11.8	7.9-9.0
2.0-3.1	2.6-2.9	2.2-3.6
5.7-8.0	6.7-8.9	6.7-7.9
28.7-37.0	29.7-38.5	31.0-35.7
	Docetaxel 5.0-12.0 2.0-3.1 5.7-8.0 28.7-37.0	Docetaxel Pemetrexed 5.0-12.0 7.1-11.8 2.0-3.1 2.6-2.9 5.7-8.0 6.7-8.9 28.7-37.0 29.7-38.5

Shepherd FA, JCO 2000; Fossella FV, JCO 2000; Ramlau R, JCO 2006; Paz-Ares L, BJC 2008; Kim ES, Lancet 2008; Krzakowski M, JCO 2010; Hanna N, JCO 2004; Cullen MH, Ann Oncol 2010; Shepherd FA, NEJM 2005;

Ciuleanu T, Lancet Oncol 2012

5-Year Estimates of OS^a

CA209-003 5-Year Update: Phase 1 Nivolumab in Advanced NSCLC

^aThere were 3 deaths between 3 and 5 years, all due to disease progression; 1 surviving patient was censored for OS prior to 5 years (OS: 58.2+ months)

5-Year Estimates of OS by Histology

CA209-003 5-Year Update: Phase 1 Nivolumab in Advanced NSCLC

5-Year Estimates of OS by PD-L1 Status^a

CA209-003 5-Year Update: Phase 1 Nivolumab in Advanced NSCLC

^aPD-L1 status was not evaluable in 61 (47%) of 129 patients; the estimated 5-y OS rate in patients with unknown PD-L1 status was 10%

Outcomes of 5-Year Survivors (n = 16)

CA209-003 5-Year Update: Phase 1 Nivolumab in Advanced NSCLC

Time since treatment initiation (months)

- 12 (75%) patients had a PR (including both early and late responses), 2 (12%) had SD, and 2 (12%) had PD as BOR
- One patient had a non-conventional response <2 months after initial progression

Summary of phase III studies of immunotherapy in previously treated patients

	CheckMate 017 ¹ Nivolumab vs docetaxel	CheckMate 057 ¹ Nivolumab vs docetaxel	KEYNOTE-010² Pembrolizumab (2mg/kg or 10mg/kg) vs docetaxel	OAK ³ Atezolizumab vs docetaxel
Phase of study	III	III	1/11	III
PD-L1 selected	No	No	Yes (TPS* ≥1%)	No
Study size, n	272 (135 vs 137)	582 (292 vs 290)	1,033 (344 vs 346 vs 343)	1,225 (425 vs 425)*
Histology	Squamous	Non-squamous	All-comers	All-comers
Line of therapy, % 2L 3L >3L Other/unknown	100 0 0 0	88 11 <1 0	69 20 9 <1	75 25 0 0
Subsequent CIT (immunotherapy arm vs chemo arm), %	<1 vs 2	1 vs 2	0.6 vs 1.7 vs 13.1	4.5 vs 17.2
Crossover from chemo arm to study immunotherapy, %	4	6	Not permitted	Not permitted
Median OS, months HR vs docetaxel (p value)	9.2 vs 6.0 0.62 (p=0.0004)	12.2 vs 9.5 0.75 (p<0.001)	10.4 vs 12.7 vs 8.5 2mg/kg: 0.71 (p=0.0008)	13.8 vs 9.6 0.73 (p=0.0003)
			тоша/ка: 0.61 (b<0.0001)	

*850 in primary population

1. Borghaei, et al. ASCO 2016

NR = not reached

2. Herbst, et al. Lancet 2015; 3. Barlesi, et al. ESMO 2016

CheckMate 017 (NCT01642004) - Study Design

- One pre-planned interim analysis for OS
- At time of DBL (December 15, 2014), 199 deaths were reported (86% of deaths required for final analysis)
- The boundary for declaring superiority for OS at the pre-planned interim analysis was P < 0.03

LCSS = Lung cancer symptom scale

Brahmer J, et al. NEJM 2015

Overall Survival

Brahmer J, et al. NEJM 2015

Department of Oncology-Hematology, AUSL della Romagna, Ravenna, Italy

CheckMate 057 (NCT01673867) Study Design

Patients stratified by prior maintenance therapy and line of therapy (second- vs third-line)

- PD-L1 expression measured using the Dako/BMS automated IHC assay^{14,15}
 - Fully validated with analytical performance having met all pre-determined acceptance criteria for sensitivity, specificity, precision, and robustness

^a Maintenance therapy included pemetrexed, bevacizumab, or erlotinib (not considered a separate line of therapy); ^b Per RECIST v1.1 criteria as determined by the investigator.

Borghaei H et al NEJM 2015

Overall Survival

Borghaei H et al NEJM 2015

Pembrolizumab versus docetaxel in pretreated NSCLC with PD-L1 expression Survival results of the KEYNOTE 010 trial

Herbst R et al, Lancet 2015

Department of Oncology-Hematology, AUSL della Romagna, Ravenna, Italy

OAK study design

Primary Endpoints (first 850 enrolled patients):

- OS in the ITT population
- OS in patients with PD-L1 expression on \geq 1% TC or IC

Secondary Endpoints: ORR, PFS, DoR, Safety

^aA prespecified analysis of the first 850 patients provided sufficient power to test the co-primary endpoints of OS in the ITT and TC1/2/3 or IC1/2/3 subgroup (≥ 1% PD-L1 expression). TC, tumor cells; IC, tumor-infiltrating immune cells.

Barlesi et al. ESMO 2016

Overall survival, ITT (n = 850)

^aStratified HR.

Barlesi et al. ESMO 2016

COMPLETED PHASE III TRIALS OF PD-1 / PDL-1 INHIBITORS IN PREVIOUSLY-TREATED NSCLC: <u>ADVERSE EVENTS</u>

		Nivolumab	Pembrolizumab	Atezolizumab	Docetaxel
TR AEs	Any grade	58-69%	63-66%	64%	81-88%
	Grade ≥3	7-10%	13-16%	37%	35-57%
	Discontinued	2-4%	4-5%	8%	7%
Pneumonitis	Any grade	5%	4-5%		0%
	Grade ≥3	1%	2%	1%	0%
Colitis	Any grade	1%	1%		0%
	Grade ≥3	1%	0.5%	0.3%	0%

Paul Mitchell, WCLC 2016

What do I really need to exclude pts from IO?

- Is PD-L1 expression a valuable predictor of efficacy of checkpointinhibitors?
- · Which other biomarkers with predictive potential can be identified?
 - Special populations (EGFR+, brain metastases, elderly)
- · Are there clinical predictors?

-

What do I really need to exclude pts from IO?

Is PD-L1 expression a valuable predictor of efficacy of checkpointinhibitors?

•

CA209-017

Brahmer J, et al. NEJM 2015

Plot of OS and PFS Hazard Ratios by PD-L1 Expression Level at Baseline

	Ν	J			Interactio				
			Un	stratified	n				
PD-L1 expression	Nivolumab	Docetaxel	HR	R (95% CI)	P-value				
OS								I	
≥ 1%	63	56	0.69	(0.45, 1.05)	0.56				
<1%	54	52	0.58	(0.37, 0.92)	0.50			— i	
≥5%	42	39	0.53	(0.31, 0.89)	0.47	_	•	— ¦	
<5%	75	69	0.70	(0.47, 1.02)	0.47				
≥10%	36	33	0.50	(0.28, 0.89)	0.41				
<10%	81	75	0.70	(0.48, 1.01)	0.41				
Not quantifiable	18	29	0.39	(0.19, 0.82)			•	I I	
PFS								I I	
≥1%	63	56	0.67	(0.44, 1.01)	0 70				
<1%	54	52	0.66	(0.43, 1.00)	0.70				
≥5%	42	39	0.54	(0.32, 0.90)	0.46	-	•	— ¦	
<5%	75	69	0.75	(0.52, 1.08)	0.16				
≥10%	36	33	0.58	(0.33, 1.02)	0.25		•	i	
<10%	81	75	0.70	(0.49, 0.99)	0.35				
- Not quantifiable	18	29	0.45	(0.23, 0.89)					
-				-	0.125	0.25	0.5	1.0	2.0
						ļ	Nivoluma	b ↔ [Docetaxel

Do we need PD-L1 testing for second-line immunotherapy?

Nivolumab versus docetaxel in non-squamous lung cancer

• In CheckMate 057, consistent with the primary analysis,² PD-L1 expression level was associated with the magnitude of OS benefit at 2 years starting at the lowest level studied (1%)

^aKaplan–Meier estimates, with error bars indicating 95% Cls

^bFor the comparison of the full Kaplan–Meier survival curves for each treatment group

Borghaei H et al ASCO 2016

OS by PD-L1 expression:

Chechmate 057 (Nivolumab)

In favour of atezolizumab In favour of docetaxe

Rizvi NA, et al. Lancet Oncol 2015 R Herbst et al. Lancet 2016 Barlesi, et al. ESMO 2016

Keynote 10 (Pembrolizumab)

Subgroup	No. of Events/ No. of Patients	Hazard	Ratio (95% CI)
Overall	521/1033		0.67 (0.56-0.80)
Male Female	332/634 189/399	- - -	0.65 (0.52-0.81) 0.69 (0.51-0.94)
<pre><65 years</pre>	317/604 204/429	- e -	0.63 (0.50-0.79) 0.76 (0.57-1.02)
PD-L1 >	<mark>> 50% H</mark> l	R: 0.53	0.73 (0.52-1.02) 0.63 (0.51-0.78)
≥50% 1%–49%	204/442 317/591		0.53 (0.40-0.70) 0.76 (0.60-0.96)
PD-L1 <	: 1% HR:	0.76	0.70 (0.54-0.89) 0.64 (0.50-0.83)
Histology Squamous Adenocarcino	128/222 ma 333/708	 	0.74 (0.50-1.09) 0.63 (0.50-0.79)
<i>EGFR</i> status Mutant Wild type	46/86 447/ <u>875</u>		0.88 (0.45-1.70) 0.66 (0.55-0.80)
	0.1	1	10
	Favors P	embrolizumab I	Favors Docetaxel
lysis cut-off date: September 30, 2015.			^a Data for the pembrolizumab doses were pooled.

In the II line setting, do we really select patients according a more favorable HR?

Do we need PD-L1 testing for second-line immunotherapy?

Atezolizumab versus docetaxel in NSCLC

On-study Prevalence

Median OS, mo Atezolizumab Docetaxel

16%	31% 55	%				Subgroup 0 TC3 or IC3	.41 0.67 0.74 0.74	<u>n = 425</u> 20.5 16.3 15.7	<u>n = 425</u> 8.9 10.8 10.3
				45%		TC0 and IC0		12.6	8.9
0%	20%	40%	60%	80%	100%		0.72		
		100	%			ITT ^a	0.73	13.8	9.6
						0.2		1 2	
	Significa	int bene	fit in PD-	L1 negat	tive wit	h	Hazard	l Ratio ^a	
	squamo	us and n	on-squa	imous hi	stology		In favor of atezolizumab	In favor of docetaxel	
Stratific	d HR for ITT	and TC1/2	12 or IC1 /2	/2 Unstrat	ified UD f	or subgroups			

^aStratified HR for ITT and TC1/2/3 or IC1/2/3. Unstratified HR for subgroups. TC, tumor cells; IC, tumor-infiltrating immune cells; OS, overall survival.

Barlesi et al. ESMO 2016

What do I really need to exclude pts from IO?

- Is PD-L1 expression a valuable predictor of efficacy of checkpointinhibitors?
- Which other biomarkers with predictive potential can be identified?
- Special populations (EGFR+, brain metastases, elderly)
- Are there clinical predictors?

•

Mutation burden significantly correlates with clinical benefit in NSCLC treated with Pembrolizumab

Rizvi et al, Science 2015

What do I really need to exclude pts from IO?

- Is PD-L1 expression a valuable predictor of efficacy of checkpointinhibitors?
- · Which other biomarkers with predictive potential can be identified?
- · Special populations (EGFR+, brain metastases, elderly)
- Are there clinical predictors?

Overall survival in EGFR mutant NSCLC in checkmate 057 trial

	Ν	Unstratified HR (95% CI)					
Overall	582	0.75 (0.62, 0.91)		-	●— ¦		
Age Categorization (years)					I		
<65	339	0.81 (0.62, 1.04)			•		
≥65 and <75	200	0.63 (0.45, 0.89)			— ¦		
≥75	43	0.90 (0.43, 1.87)			_●¦		
Gender					Ī		
Male	319	0.73 (0.56, 0.96)		—			
Female	263	0.78 (0.58 <i>,</i> 1.04)			• <u>+</u>		
Baseline ECOG PS							
0	179	0.64 (0.44, 0.93)			— i		
≥1	402	0.80 (0.63, 1.00)					
Smoking Status					I		
Current/Former Smoker	458	0.70 (0.56, 0.86)			⊢ ¦		
Never Smoked	118	1.02 (0.64, 1.61)			-		
EGFR Mutation Status					I		
Positive	82	1.18 (0.69, 2.00)		-	.		
Not Detected	340	0.66 (0.51, 0.86)			— ¦		
Not Reported	160	0.74 (0.51, 1.06)			┣─┼		
			I	I	1	1	l
			0.25	0.5	1.0	2.0	4.0
			Nivolumab	←		→	Docetaxe

All randomized patients (nivolumab, n = 292; docetaxel, n = 290).

Borghaei H et al NEJM 2015

Overall survival in EGFR mutant NSCLC in the Keynote 010 trial

	Events/patients (n)	Hazard ratio (95% Cl
Sex		
Male	332/634	0.65 (0.52-0.81)
Female	189/399	0.69 (0.51-0.94)
Age (years)		
<65	317/604	0.63 (0.50-0.79)
≥65	204/429	0.76 (0.57–1.02)
ECOG performance	status	
0	149/348	0.73 (0.52-1.02)
1	367/678	0.63 (0.51-0.78)
PD-L1 tumour prop	oortion score	
≥50%	204/442 —	0.53 (0.40-0.70)
1-49%	317/591	0.76 (0.60-0.96)
Tumour sample		
Archival	266/455	0.70 (0.54-0.89)
New	255/578	0.64 (0.50-0.83)
Histology		
Squamous	128/222	- 0.74 (0.50-1.09)
Adenocarcinoma	333/708	0.63 (0.50-0.79)
EGFR status		
Mutant	46/86	0.88 (0.45–1.70)
Wild-type	447/875 —	0.66 (0.55-0.80)
Overall	521/1033 —	0-67 (0-56–0-80)
(.1	10
	Favours pembrolizumab	Favours docetaxel

Herbst R et al, Lancet 2015

Overall survival in EGFR mutant NSCLC in the OAK trial

				iviedian C	is, mo
				Atezolizumab	Docetaxe
Subgroup	<u>n (%)</u>	1	<u>HR</u> ª	<u>n = 425</u>	<u>n = 425</u>
Female	330 (39%)	· · · · · · · · · · · · · · · · · · ·	0.64	16.2	11.2
Male	520 (61%)	⊢ ♦ I	0.79	12.6	9.2
< 65 years	453 (53%)	⊨ ♦	0.80	13.2	10.5
≥ 65 years	397 (47%)	► • · · · · · ·	0.66	14.1	9.2
ECOG PS 0	315 (37%)	⊢ ♦H	0.78	17.6	15.2
ECOG PS 1	535 (63%)	└── ♦ ── 1	0.68	10.6	7.6
1 prior therapy	640 (75%)	⊢ − ♦ −−−1	0.71	12.8	9.1
2 prior therapies	210 (25%)	► ♦ I	0.80	15.2	12.0
Never smokers	156 (18%)	► ♦I	0.71	16.3	12.6
Current/previous smokers	694 (82%)		0.74	13.2	9.3
CNS mets	85 (10%)	►	0.54	20.1	11.9
No CNS mets	765 (90%)		0.75	13.0	9.4
KRAS mutant	59 (7%)	► ♦I	0.71	17.2	10.5
KRAS wildtype	203 (24%)		0.83	13.8	11.3
EGFR mutant	85 (10%)	► ◆	1.24	10.5	16.2
EGFR wildtype	628 (74%)	⊢_ ♦ !	0.69	15.3	9.5
ІТТ	850 (100%)	⊢ ♦	0.73	13.8	9.6
	0.2	1 2			
^a Stratified HR for ITT. Unstratified HR for	In fav	or of atezolizumab \leftarrow	favor of docetaxel		
subgroups.					

Barlesi et al. ESMO 2016

ATLANTIC: phase 2, open-label, single-arm study

[SP263] Assay); ¹ORR by independent central review (RECIST v1.1) CT, chemotherapy; DCR, disease control rate; DoR, duration of response; TKI, tyrosine kinase inhibitor ClinicalTrials.gov number: NCT02087423

EUROPEAN LUNG CANCER CONFERENCE 2017

Anti-tumour activity (full analysis set*)

		PD-L1 high (≥25%)		PD-L1 low/neg (<25%)
	EGFRmut/ALK+ (n=74 [†])	EGFRmut (n=64†)	<i>ALK</i> + (n=10)	EGFRmut/ALK+ (n=28)
Confirmed ORR [‡] , n (%) [95% CI]	9 (12.2) [5.7–21.8]	9 (14.1) [6.6–25.0]	0	1 (3.6) [0.1–18.3]
Stable disease ≥8 weeks, n (%)	23 (31.1)	21 (32.8)	2 (20.0)	5 (17.9)
Progressive disease, n (%)	40 (54.1)	32 (50.0)	8 (80.0)	22 (78.6)
Median DoR, months (95% CI)	7.4 (5.4, 9.2)	7.4 (5.4, 9.2)	NC	7.9 (NC)

*Patients evaluable for response per independent Central Review; 12 patients were not evaluable due to incomplete post baseline assessments; *All responses were partial responses. NC, not calculated (due to zero or one responders)

EUROPEAN LUNG CANCER CONFERENCE 2017

Best change in target lesion size (full analysis set*)

PD-L1 high (≥25%)

PD-L1 low/negative (<25%)

*Patients evaluable for response per Independent Central Review (only patients who had a post-baseline tumour assessment are shown on the graphs); *Best objective response is progression, due to disease progression in non-target lesions

EUROPEAN LUNG CANCER CONFERENCE 2017

EUROPEAN LUNG CANCER CONFERENCE 2017

SAFETY AND EFFICACY ANALYSES OF ATEZOLIZUMAB IN ADVANCED NON-SMALL CELL LUNG CANCER PATIENTS WITH OR WITHOUT BASELINE BRAIN METASTASES

Rimas Lukas,¹ Mayank Gandhi,² Carol O'Hear,² Sylvia Hu,² Marcus Ballinger,² Catherine Lai,² Jyoti D. Patel³

¹Department of Neurology, Northwestern University, Chicago, IL, USA; ²Genentech, Inc., South San Francisco, CA, USA; ³Section of Hematology/Oncology, The University of Chicago Medicine, Chicago, IL, USA

• OS

• Time to development of new brain lesions

EFFICACY ANALYSIS FROM OAK – OVERALL SURVIVAL

 In patients with pre-treated brain metastases, mOS was longer in those treated with atezolizumab vs docetaxel

elcc^{*} TIME TO DEVELOPMENT OF NEW BRAIN LESIONS

	Atezolizumab (n = 38)	Docetaxel (n = 47)
New brain lesi	on-free rate, %	
6 months	84%	66%
12 months	73%	28%
18 months	73%	NE (≤ 28%)
24 months	73%	NE (≤ 28%)

Patients With Baseline Brain Metastases

"Immunosenescence" may reduce the efficacy of the immune based therapies

Efficacy and Safety of Nivolumab in Elderly Patients With Advanced Squamous NSCLC Participating in the Expanded Access Program in Italy

Francesco Grossi,¹ Lucio Crinò,² Andrea Misino,³ Paolo Bidoli,⁴ Angelo Delmonte,⁵ Francesco Gelsomino,⁶ Claudia Proto,⁷ Maria Laura Mancini,⁸ Lorenza Landi,⁹ Daniele Turci,¹⁰ Silvia Quadrini,¹¹ Paola Antonelli,¹² Paolo Marchetti,¹³ Luca Toschi,¹⁴ Sabrina Giusti,¹⁵ Francesco Di Costanzo,¹⁶ Francesca Rastelli,¹⁷ Paolo Sandri,¹⁸ Vieri Scotti,¹⁶ Filippo de Marinis¹⁹

¹AOU San Martino, Genova, Italy; ²Azienda Ospedaliera di Perugia, Perugia, Italy; ³Istituto Tumori Giovanni Paolo II, Bari, Italy; ⁴Ospedale San Gerardo, Monza, Italy; ⁵Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy; ⁶Policlinico Sant'Orsola–Malpighi, Bologna, Italy; ⁷Istituto Nazionale Tumori, Milano, Italy; ⁸Policlinico Umberto I, Roma, Italy; ⁹Presidio Ospedaliero di Livorno, Livorno, Italy; ¹⁰AUSL della Romagna Presidi Ospedalieri di Ravenna, Lugo, Faenza, Italy; ¹¹ASL Frosinone Presidio Ospedaliero SS Trinità, Sora, Frosinone, Italy; ¹²Presidio Ospedaliero di Busto Arsizio, Milano, Italy; ¹³Azienda Ospedaliera Sant'Andrea, Roma, Italy; ¹⁴Istituto Clinico Humanitas, Rozzano, Milano, Italy; ¹⁵Ospedale S. Donato, Arezzo, Italy; ¹⁶Azienda Ospedaliero–Universitaria Maggiore Careggi, Firenze, Italy; ¹⁷ASUR Marche, Area Vasta 4 Fermo, Italy; ¹⁸A.O. Santa Maria degli Angeli, Pordenone, Italy; ¹⁹Istituto Europeo di Oncologia, Milano, Italy

ESMO 2016

	Elderly patie	ents ^a (n = 70)	All patient		
Response	First tumor assessment	Best response	First tumor assessment	Best response	a
ORR, n (%)	8 (11)	13 (19)	51 (14)	67 (18)	
DCR, n (%)	25 (36)	30 (43)	151 (41)	175 (47)	
Overall respor	nse, n (%)				
CR	0	0	1 (<1)	4 (1)	
PR	8 (11)	13 (19)	50 (14)	63 (17)	
SD	17 (25)	17 (24)	100 (27)	108 (29)	Eve
PD	43 (61)	38 (54)	212 (57)	189 (51)	
Not determined	2 (3)	2 (3)	8 (2)	7 (2)	Any relat

^aPatients aged ≥75 years

	Elderly patients ^a (n = 70)		All patients (N = 371)	
Event	Any grade n (%)	Grade 3–4 n (%)	Any grade n (%)	Grade 3–4 n (%)
Any treatment- related AE	20 (29)	2 (3)	109 (29)	21 (6)

Discontinuations	Elderly patients ^a (n = 70)	All patients (N = 371)
Discontinued treatment, n (%)	56 (80)	281 (76)

What do I really need to exclude pts from IO?

- Is PD-L1 expression a valuable predictor of efficacy of checkpointinhibitors?
- · Which other biomarkers with predictive potential can be identified?
- · Special populations (EGFR+, brain metastases, elderly)
- Are there clinical predictors?

Post-hoc multivariate analysis on patient outcome during the first 3 months in the CHECKMATE 057

Peters S, et al WCLC 2016

Combination of clinical factors and PD-L1 expression in Checkmate 057

- Post-hoc, exploratory multivariate analysis suggested that nivolumab-treated patients with poorer prognostic features and/or aggressive disease when combined with lower or no tumor PD-L1 expression may be at higher risk of death within the first 3 months
 - These included the following known prognostic factors: <3 months since last treatment, PD as best response to prior treatment, and ECOG PS = 1

Conclusions

- Immunotherapy is now the standard therapy for *EGFR^{wt}*, *ALK^{wt}* NSCLC in second line irrespective of clinical or biological characteristics.
- PD-L1 expression is not critical for second-line immunotherapy
- Landscape of NSCLC therapy is rapidly evolving (recent Pembrolizumab approval in first line setting)