CORSO DI IMMUNOTERAPIA IN ONCOLOGIA

NEGRAR (VR) 23/24 Maggio 2017 Cancer Care Center "Sacro Cuore - Don Calabria" Centro Formazione - Aula 1

NSCLC: immunotherapy as a first-line treatment

Paolo Bironzo

Oncologia Polmonare – AOU S. Luigi Gonzaga

Orbassano (To)

The 800-pound gorilla

Platinum-based chemotherapy is the SOC for 1st-line therapy in advanced NSCLC without oncogenic drivers : ~ 85% caucasians

1st line platinum-based chemotherapy is **not** the big Gorilla in EGFR mutant and ALK rearranged NSCLC only.

Group discussion

What are the evidences for single-agent frontline checkpoint inhibition? → We've got 2 phase 3 trials!

Are other strategies promising? → Platinumdoublets + PD-1 inhibitors (Ph2)

Can immune checkpoint inhibitors occupy this sit?

Pembrolizumab, a new standard (at least for some patients)

Phase 3 Keynote 024 Study Design

Primary: PFS

Secondary: OS, ORR, safety

Exploratory (prespecified): DOR, patient-reported outcomes

^aTo be eligible for crossover, progressive disease (PD) had to be confirmed by blinded, independent central radiology review and all safety criteria had to be met. Reck M, NEJM 2016

Reck M, NEJM 2016

- → ORR is improved, with a control arm that performs as expected (from other phase III trials)
- → 45% ORR is the best RR ever reported in 1st line setting in Ph III trials (and with a monotherapy !)
- → Time to Response is identical between Pembro and Chemo (2.2 months)

Subgroup analyses

Subgroup	No. of Event No. of Patien	s/ Its Hazard Ratio for Dise	ease Progression or Death (95% CI)
Overall	189/305		0.50 (0.37-0.68)
Age			
<65 yr	91/141		0.61 (0.40-0.92)
≥65 yr	98/164		0.45 (0.29-0.70)
Sex			
Male	116/187		0.39 (0.26-0.58)
Female	73/118		0.75 (0.46–1.21)
Region of enrollment			
East Asia	21/40		0.35 (0.14-0.91)
Non–East Asia	168/265	_	0.52 (0.38-0.72)
ECOG performance-status score			
0	59/107		0.45 (0.26-0.77)
1	129/197		0.51 (0.35-0.73)
Histologic type			
Squamous	37/56		0.35 (0.17-0.71)
Nonsquamous	152/249		0.55 (0.39-0.76)
Smoking status			
Current	44/65		0.68 (0.36–1.31)
Former	133/216		0.47 (0.33-0.67)
Never	12/24		0.90 (0.11–7.59)
Brain metastases at baseline			
Yes	17/28		0.55 (0.20–1.56)
No	172/277		0.50 (0.36–0.68)
Platinum-based chemotherapy regim	en		
Included pemetrexed	120/199		0.63 (0.44-0.91)
Did not include pemetrexed	69/106		0.29 (0.17-0.50)
		0.1	
		Pembrolizumab Better	Chemotherapy Better

Reck M, NEJM 2016

FDA approval: October 24th, 2016 EMA approval: December 15th, 2016 AIFA reimbursement: May 19th 2017

Nivolumab...a different story

Phase 3 CheckMate 026 Study Design

Key eligibility criteria:

Stage IV or recurrent NSCLCNo prior systemic therapy for advanced disease

•No *EGFR/ALK* mutations sensitive to available targeted inhibitor therapy

•≥1% PD-L1 expression^a

•CNS metastases permitted if adequately treated at least 2 weeks prior to randomization

Stratification factors at randomization:

- PD-L1 expression <u>(<5% vs ≥5%)</u>^a
- Histology (squamous vs nonsquamous)

CheckMate 026: Primary Endpoint (PFS per IRRC in ≥5% PD-L1+)

Nivolumab Chemotherapy n = 211 n = 212

Socinski M, ESMO 2016

CheckMate026: OS (≥5% PD-L1+)

All randomized patients (≥1% PD-L1+): HR = 1.07 (95% CI: 0.86, 1.33) Socinski M, ESMO 2016

Subgroup analyses

CheckMate 026: PFS and OS Subgroup Analyses (All Randomized Patients)

	Patien	its, n	Unstrat	ified HR	Unstratified	HR (95% CI)
Subgroup	Nivolumab	Chemo	PFS	OS	PFS	OS
Overall	271	270	1.19	1.08		
≥65 years	123	137	1.21	1.04	÷.	
<65 years	148	133	1.17	1.13		
Male	184	148	1.05	0.97	- 	- -
Female	87	122	1.36	1.15		
ECOG PS = 0	85	93	1.69	1.11	_ — —	
ECOG PS ≥1	185	177	1.01	1.02	- <u>+</u> -	- • -
Squamous	65	64	0.83	0.82		
Non-squamous	206	206	1.29	1.17		֥
Never smoker	30	29	2.51	1.02		
Former smoker	186	182	1.14	1.09	֥	
Current smoker	52	55	1.03	1.05	_ _	
≥50% PD-L1+	88	126	1.07	0.90		
r					$0.5 1 2 4$ Nivo \leftarrow Chemo	$0.5 1 2 4$ Nivo $\leftarrow Chemo$

Why such divergent results in phase 3 trials ?

- Is nivolumab less active than pembrolizumab? <u>Unlikely</u> (see previous Ph2 and Ph3 studies in NSCLC)...
- Are enrolled patients different? 11% of non-smokers in CM vs 3% in KN; prior radiation: 37.6% in CM vs none* in KN
- Is PD-L1 the issue? Different threshold, antibodies, time of specimens collection (archival in CM vs fresh in KN).
 - Different performances of control arms? Not at all...

So pembro as a first line...but how many patients would be elegible in our dailiy clinical practice?

 $\hat{\mathcal{G}}$ \hat

NSCLC patients in daily practice

The pool of patients who can benefit from immunotherapy* in the front line setting clearly has to be enlarged

PS 0/1, no untreated BM, no AI, no steroids

* Pembrolizumab

How about combining treatments?

Is combo better than chemo? Keynote-021 phase 2 trial cohort G

Langer CJ, Lancet Oncol 2016

Is combo better than chemo? Keynote-021 phase 2 trial cohort G

DEPARTMENT OF ONCOLOGY OF TORINO UNIVERSITY

Langer CJ, Lancet Oncol 2016

Is combo better than chemo? Keynote-021 phase 2 trial cohort G

	Pembrolizu	Pembrolizumab plus chemotherapy (N=59)				Chemotherapy (N=62)			
	Grade 1-2	Grade 3	Grade 4	Grade 5	Grade 1-2	Grade 3	Grade 4	Grade 5	
Related to treatment*									
Апу	32 (54%)	18 (31%)	4 (7%)	1 (2%)	× 40 (65%) <	12 (19%)	2 (3%)	2 (3%)	
Serious	2 (3%)	10 (17%)	3 (5%)	1 (2%)	1(2%)	2 (3%)	1 (2%)	2 (3%)	
Led to discontinuation	1(2%)	4 (7%)	0	1 (2%)	5 (8%)	1(2%)	0	2 (3%)	
Led to death	0	0	0	1 (2%)	0	0	0	2 (3%)	
Of interest based on a presumed i	mmunological	I mechanism of a	action†‡						
Any	11 (19%)	1 (2%)	1 (2%)	0	6 (10%)	1(2%)	0	0	
Hypothyroidism	9 (15%)	0	0	0	3 (5%)	0	0	0	
Hyperthyroidism	5 (8%)	0	0	0	1(2%)	0	0	0	
Pneumonitis	2 (3%)	1 (2%)	0	0	0	0	0	0	
Infusion reactions	1(2%)	0	1(2%)	0	2 (3%)	0	0	0	
Severe skin reactions	0	1 (2%)	0	0	0	1 (2%)	0	0	

Data are presented as n (%). *As attributed by the investigator. Events are listed in order of descending frequency in the pembrolizumab plus chemotherapy group. †Listed in order of descending frequency in the total population. ‡Events include related terms, are provided regardless of attribution to study treatment by the investigator, and are listed in order of descending frequency in the pembrolizumab group.

Table 3: Adverse events in the as-treated population

Grade 3 or worse AEs: 39% vs 26%

Selected AEs with high rate of incidence: fatigue, nausea, anaemia. AEs with \geq 10% difference between arms: rash (27% vs 15%), alopecia (14% vs 3%)

Improve patients selection: TMB?

*DNA was sequenced on the Illumina HiSeq 2500 using 2 × 100-bp patred-end reads; an average of 84 and 89 million reads were sequenced per tumor and germline sample, respectively (average 84.6 × and 93 × the mean target coverage, respectively)

58% of randomized patients.

TMB subgroups divided according to tertile distribution

Characteristic	Nivolumab (n = 158)	Chemotherapy (n = 154)
Median age, years (range)	65 (32, 89)	64 (34, 87)
Female, %	33.5	46.8
ECOG PS, % 0 1/2	29.1 69.6/0.6	35.1 63.6/1.3
Smoking status, % Current/former smoker Never smoker	15.2/73.4 10.1	20.8/69.5 8.4
Tumor histology, % Squamous Non-squamous	22.8 77.2	22.7 77.3
PD-L1 expression level, % ≥5%	79.1	82.5
≥50%	36.1	47.4
TMB tertile, % Low Medium	39.2 31.0	26.6 34.4
High	29.7	39.0

Peters S, AACR 2017C

PFS by subgroups

OS by subgroups

Peters S, AACR 2017C

PD-L1 and TMB

NO association between TMB and PD-L1 expression in patients with >1% of PD-L1

Peters S, AACR 2017C

Still many questions to be answered...

- Is the role of PD-L1 expression so sure for front-line single agent immunotherapy patients selection? Waiting for <u>Keynote 042</u>
- How to enlarge Keynote 024 population? The issue of PS 2 patients.
- How can we select patients for checkpoint inhibition in first-line setting? Going beyond PD-L1...TMB?
- Will combinations keep promises? Waiting for phase 3 data...
- If so, are combinations better than single-agent checkpoint inhibitors in all patients?
- And are they better than sequences?

And now, what should we do in daily clinical practice?

- Pembrolizumab is the first line treatment for advanced NSCLC with PD-L1 expression ≥50% without uncontrolled autoimmune disease and high dose steroids
- Testing PD-L1 will become mandatory at diagnosis