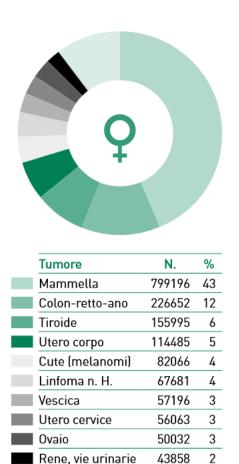
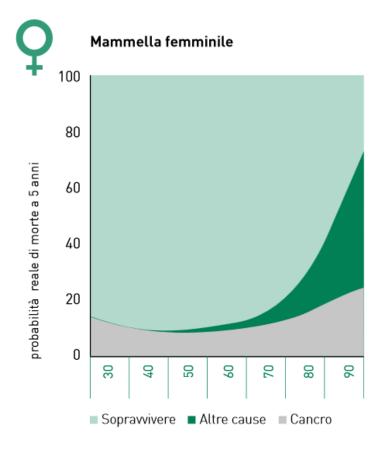


Cardiotossicità da antracicline e farmaci anti-HER2

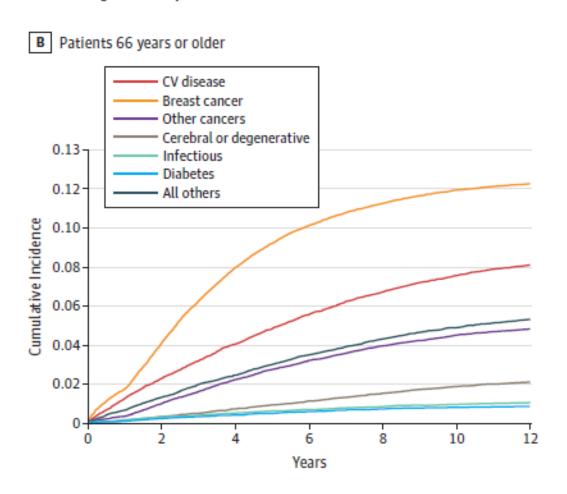

Maria Vittoria Dieci

Università di Padova Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche Istituto Oncologico Veneto I.R.C.C.S.


BC survivors and competing causes of death

Altri

184185


10

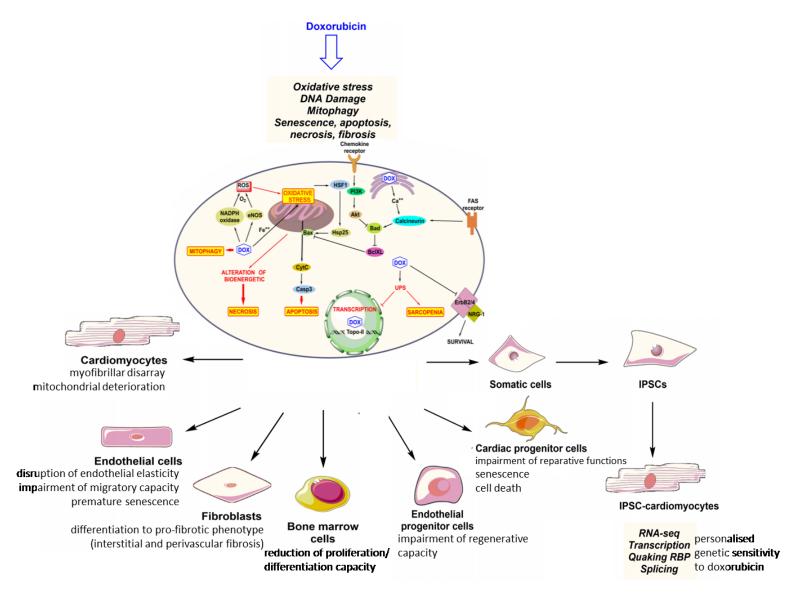
JAMA Cardiology | Brief Report

A Population-Based Study of Cardiovascular Mortality Following Early-Stage Breast Cancer

Husam Abdel-Qadir, MD; Peter C. Austin, PhD; Douglas S. Lee, MD, PhD; Eitan Amir, MB, ChB, PhD; Jack V. Tu, MD, PhD; Paaladinesh Thavendiranathan, MD, MSc; Kinwah Fung, MSc; Geoffrey M. Anderson, MD, PhD

Cardiotoxicity induced by BC treatments

Cancer therapy	Major cardiovascular toxicity
Anthracyclines	Cardiomyopathy
HER-2 antagonists	Cardiomyopathy
Radiation	Coronary artery disease
Cyclophosphamide	Hemorrhagic myocarditis
Taxanes	Bradycardia, ischemia
Fluoropyrimidines	Vasospasm and ischemia
Tamoxifen	Thromboembolism
Aromatase inhibitors	Hyperlipidemia, hypertension, ischemia
Cyclin dependent kinase 4/6 inhibitors	QTc prolongation

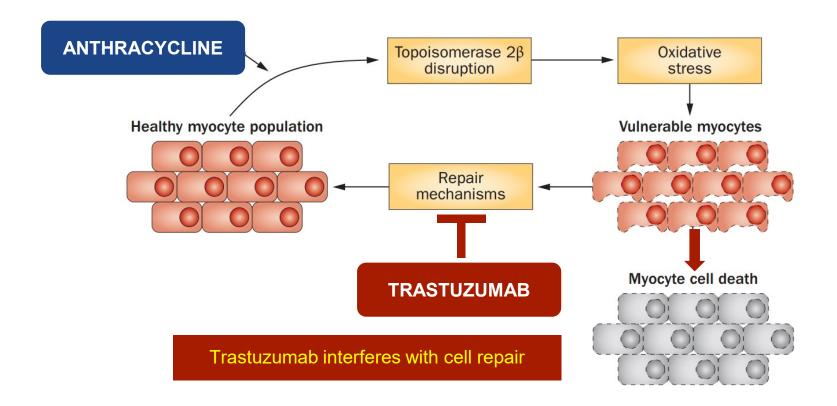

Cardiotoxicity definition

Classification system	Grade I	Grade II	Grade III	Grade IV		
NYHA	No limitation of activities	Mild limitation of activity	Marked limitation of activity	Confined to bed or chair		
American College of Cardiology/American Heart Association	Stage A; at high risk but without structural heart disease or symptoms	Stage B; structural heart disease but without signs or symptoms	Stage C; Structural heart disease with prior or current symptoms	Stage D; Refractory CHF requiring specialized interventions		
Clinical Toxicity Criteria version 2.0	Asymptomatic decline of resting EF ≥10% but <20% of baseline value	Asymptomatic but resting EF less than LLN for laboratory or decline of resting EF of ≥20% of baseline value; <24% SF	CHF responsive to treatment	Severe or refractory CHF or requiring intubation		
		EJECTION F	RACTION DECREASE			
Common	-	Resting EF 50-40%; 10-19% drop from baseline	Resting EF 39-20%; >20% drop from baseline	Resting EF <20%		
Terminology Criteria		LEFT VENTRICU	ILAR SYSTOLIC DYSFUNCTION			
for Adverse Events version 4.03	-	-	Symptomatic due to drop in EF responsive to intervention	Refractory or poorly controlled due to drop in EF; intervention such as ventricular assist device, IV vasopressor support or heart transplant indicated		
Cardiac review and evaluation	Any of: 1. Cardic	liomyopathy characterized by a decrease in LVEF globally or more severe in the septum 2. Signs and symptoms of HF				
committee	3. Decline of EF ≥5% to final ejection fraction < 55% with symptoms of congestive HF4. Asymptomatic decline of LVEF ≥ 10% to final ejection fraction < 55%					

Two types of treatment-related cardiac dysfunction


TYPE I: e.g. anthracyclines	TYPE II: e.g. trastuzumab
Cellular death (damage starts with the first administration)	Cellular dysfunction (mitochondrial and protein alterations)
Biopsy changes	No typical anthracycline-like biopsy changes
Cumulative-dose related	No cumulative-dose related
Time to presentation: weeks to decades	Time to presentation: weeks
Nonreversible (myocyte death)	Predominantly reversible (myocyte dysfunction)
Risk factors: combination CT, RT, age, previous cardiac disease, hypertension	Risk factors: prior/concomitant anthracyclines, age, previous cardiac disease, obesity

Anthracycline-related TYPE I cardiotoxicity



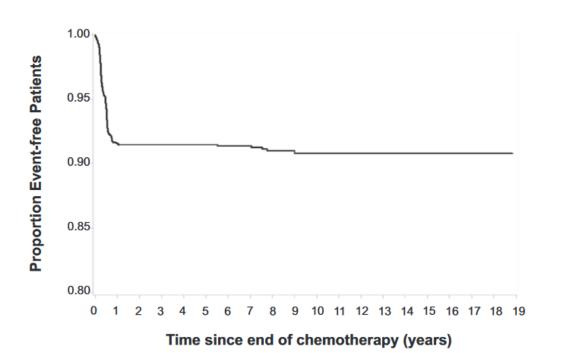
Trastuzumab-related TYPE II cardiotoxicity

Signalling in cardiomyocytes through the HER2– HER4 heterodimers is essential for development during embryogenesis and cardiomyocyte survival especially in situations of stress

Anthracycline + Trastuzumab

Cardiotoxicity from adjuvant anthracycline and trastuzumab for BC: Clinical considerations

- Prevalence and risk factors
- Strategies to minimize cardiac risk
 - Can we avoid anthracyclines?
 - De-escalated trastuzumab-containing regimens
 - Cardioprotection/biomarkers (next presentations)
- What do guidelines say on monitoring and baseline assessment

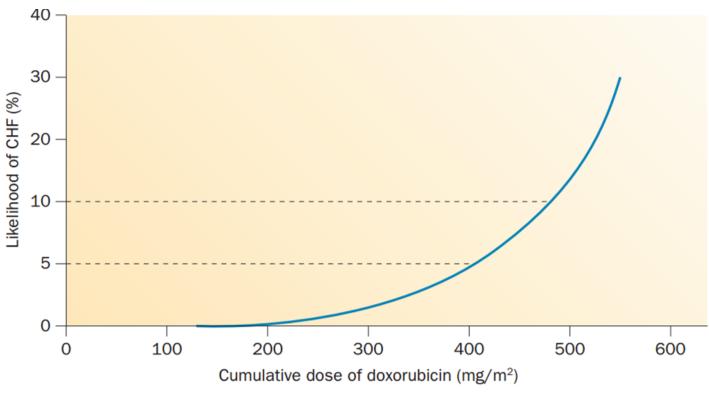

Classification of anthracyclineinduced cardiotoxicity

Definition	Incidence	Timing	Clinical manifestation
Acute	<1%	Immediately after infusion	Acute, transiet decline in myocaridal contractility
Early-onset chronic progressive	1.6-2.1%	During or <1y from end of treatment	Dilated CMP
Late-onset chronic progressive	1.6%-5%	>1y from the end of treatment (may become clinically evident 10-20y from end of treatment)	Dilated CMP

Old classification (1990s), based on retrospective small studies

Early Detection of Anthracycline Cardiotoxicity and Improvement With Heart Failure Therapy

Daniela Cardinale, MD, PhD, FESC; Alessandro Colombo, MD; Giulia Bacchiani, MD; Ines Tedeschi, MSc; Carlo A. Meroni, MD; Fabrizio Veglia, PhD; Maurizio Civelli, MD; Giuseppina Lamantia, MD; Nicola Colombo, MD; Giuseppe Curigliano, MD, PhD; Cesare Fiorentini, MD; Carlo M. Cipolla, MD

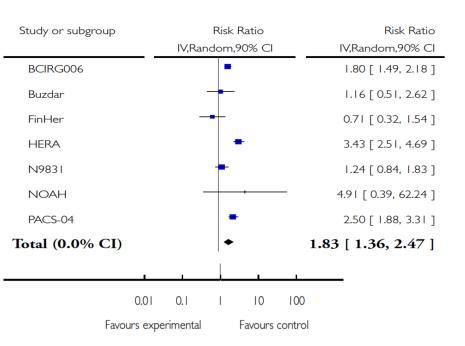

N tot=2625 cancer pts treated with anthracyclines

Prospective LVEF monitoring

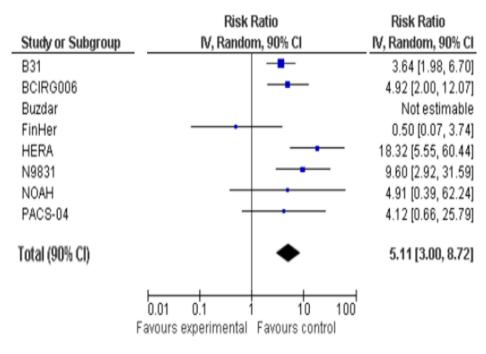
Cardiac tox definition: reduction in LVEF >10 percentage points from baseline and <50%

N=226 pts (9%) had cardiac toxicity, 98% within 1st year from end of CT

Cumulative doxorubicin dose and risk of congestive heart failure


	Cumulative life-time dose	Usual max dose in adjuvant BC treatment regimens
Doxorubicin	400-550 mg/mq	240 mg/mq
Epirubicin	900 mg/mq	360-540 mg/mq

Trastuzumab containing regimens for early breast cancer


THE COCHRANE
COLLABORATION

Lorenzo Moja¹, Ludovica Tagliabue², Sara Balduzzi³, Elena Parmelli⁴, Vanna Pistotti⁵, Valentina Guarneri⁴, Roberto D'Amico³

LVEF decline

Congestive heart failure

Total events 135 20 Heterogeneity: Tau 2 = 0.20; Chi 2 = 8.32, df = 6 (P = 0.22); I^2 = 28% Test for overall effect: Z = 5.02 (P < 0.00001)

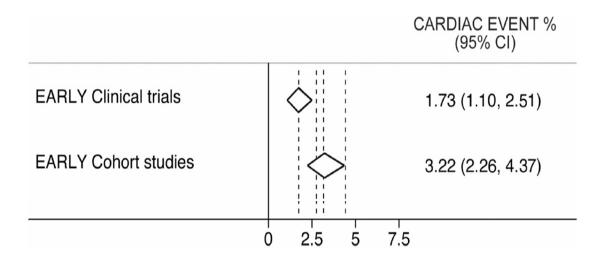
Cardiotoxicity related to anthracycline and trastuzumab containing treatment

	Trial	Reported incidence in CHF (%)	Reported incidence of LV dysfunction (%)	Reversibility reported	Reported cardiac deaths (n)
NSABP B-31		4.0	-	Yes	1
NCCTG	Arm B (AC \rightarrow T \rightarrow H)	2.8	7.8	Yes	1
N9831	Arm C (AC \rightarrow TH \rightarrow H)	3.3	10.4	Yes	0
BCIRG-006 Anthracycline arm		2.0	18.6	Yes	0
FNCLCC-PAG	CCS	1.5	11.1*	-	0

^{*}severe LVEF decline

Recovery from trastuzumab-related cardiac toxicity in the HERA trial

			1 Year of Trastuzu	mab	2 Years of Trastuzumab			
Variable	No.	%	Median (months)*	Range (months)†	No.	%	Median (months)*	Range (months)†
Severe CHF	14				13			
Reached acute recovery	10	71.4			11	84.6		
Time to acute recovery			9.7	2.3-61.0			5.8	1.0-58.1
Occurrence of LVEF decrease < 50% after acute recovery	4	40.0			4	36.4		
Time to LVEF decrease < 50% after acute recovery			34.8	6.9-34.8			_	17.5-52.6
Confirmed significant LVEF decrease	69				120			
Reached acute recovery	56	81.2			105	87.5		
Time to acute recovery			6.3	0.7-31.3			8.3	0.5-71.7
Occurrence of LVEF decrease < 50% after acute recovery	21	37.5			36	34.3		
Time to LVEF decrease < 50% after acute recovery			87.8	6.0-87.8			_	2.8-67.8
Any cardiac end point	83				133‡			
Reached acute recovery	66	79.5			116	87.2		
Time to acute recovery			6.6	0.7-61.0			7.2	0.5-71.7
Occurrence of LVEF decrease < 50% after acute recovery	25	37.9			40	34.5		
Time to LVEF decrease < 50% after acute recovery			87.8	6.0-87.8			_	2.8-67.8


Abbreviations: CHF, congestive heart failure; LVEF, left ventricular ejection fraction.

^{*}Kaplan-Meier estimate of median.

[†]Range excluding censored values.

[‡]Three patients who experienced cardiac death were excluded.

Anthracycline and trastuzumab-related cardiotoxicity: REAL WORLD

Severe cardiac events at 2 yrs:

- CHF
- myocardial infarction
- cardiac dysrhythmia
- LVEF decline <40%
- grade III/IV cardiac toxicity
- grade II cardiac toxicities requiring specific pharmacological treatment

Cardiovascular risk factors	Number of studies	Number of patients	Cases	Proportion, % (95 % CI)
Age ≥60	7	3526	139	4.91 (3.22–6.94)
History of cardiac diseases	2	92	17	19.12 (11.85–27.63)
Hypertension	6	1503	74	5.47 (3.40–7.99)
Diabetes	4	167	11	6.19 (0.85–15.93)
Dyslipidemia	3	357	15	4.43 (2.54–6.78)
Body mass index (BMI) ≥25	4	898	36	6.49 (2.34–12.51)
Smoking	2	343	16	5.31 (2.15–9.75)

Cardiotoxicity from adjuvant anthracycline and trastuzumab for BC: Clinical considerations

- Prevalence and risk factors
- Strategies to minimize cardiac risk
 - Who can be spared anthracyclines?
 - De-escalated trastuzumab-containing regimens
 - Cardioprotection/biomarkers (other presentations)
- What do guidelines say on baseline assessment and monitoring

Avoid overtreatment: de-escalated strategies

- Sparing chemotherapy for low-risk HR+/HER2- early breast cancer patients:
 - Clinicopathological factors
 - Multigene assays (LoE1A for Mammaprint¹ and Oncotype DX²)
- Avoid anthracyclines for patients candidate to adjuvant chemotherapy
 - recent data from joint analysis of RCTs suggest that taxane-based anthracycline-free CT may be an option especially for HR+ N0³
- Liposomal anthracycline formulations (MBC)
- Reduce the burden of treatment for HER2+ patients candidate to adjuvant chemotherapy and trastuzumab

Clinical decision must be taken based on an accurate comorbidities assessment

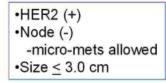
Avoid overtreatment: de-escalated strategies

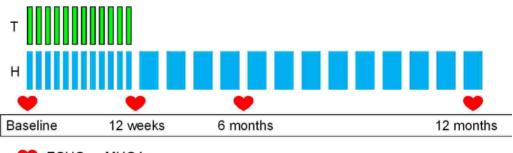
- Sparing chemotherapy for low-risk HR+/HER2- early breast cancer patients:
 - Clinicopathological factors
 - Multigene assays (LoE1A for Mammaprint¹ and Oncotype DX²)
- Avoid anthracyclines for patients candidate to adjuvant chemotherapy
 - recent data from joint analysis of RCTs suggest that taxane-based anthracycline-free CT may be an option especially for HR+ N0³
- Liposomal anthracycline formulations (MBC)
- Reduce the burden of treatment for HER2+ patients candidate to adjuvant chemotherapy and trastuzumab

Clinical decision must be taken based on an accurate comorbidities assessment

Escalation and de-escalation in HER2 positive early breast cancer

2018

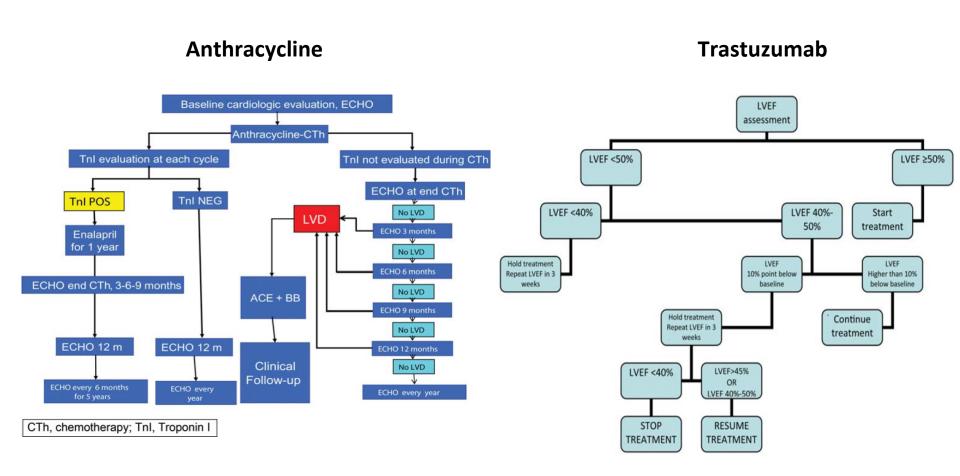

Maria Vittoria Dieci^{a,b}, Grazia Vernaci^a, and Valentina Guarneri^{a,b}


Randomized noninferiority trials of short vs. 1 year adjuvant trastuzumab

		Median			Efficacy	(accor	c events ding to definition)
Study	N	FU (years)	Treatment arms	% DFS	HR 95% CI	% events	P
PERSEPHONE [30**]	4088	4.9	CT (Center's choice) + H for 6 m CT (Center's choice) + H for 12 m	4 yrs 89.4% 4 yrs 89.8%	1.07 (0.93–1.24)	4% ^f 8% ^f	<0.0001 ^f
PHARE [31,32]	3380	3.5	$\begin{array}{c} CT \to H \text{ (6 m)} \\ CT \to H \text{ (12 m)} \end{array}$	2 yrs 91.1% 2 yrs 93.8%	1.28 (1.05–1.56)	4.0% 6.6%	< 0.001
SOLD [33*]	2174	5.2	TH (9 w) \rightarrow FEC TH (9 w) \rightarrow FEC \rightarrow H (up to 12 m)	5 yrs 88.0% 5 yrs 90.5%	1.39 (1.12–1.72)	2% 4%	0.01
ShortHER [34*]	1253	5.2	$\begin{array}{c} 3 \text{ wT} + \text{wH (9 w)} \rightarrow \text{FEC} \\ \text{AC} \rightarrow 3 \text{ wTH} \rightarrow \text{H (up to 12 m)} \end{array}$	5 yrs 85.4% 5 yrs 87.5%	1.15 (0.91-1.46)	5.2% 14.4%	<0.0001g
HORG [35]	481	3.9–4.25	$\begin{array}{l} ddFEC \rightarrow ddT + H \text{ (6 m)} \\ ddFEC \rightarrow ddT + H \text{ (12 m)} \end{array}$	3 yrs 93.3% 3 yrs 95.7%	1.57 (0.086–2.10) e	0.8% 0%	NA

Cardiac Outcomes of Patients Receiving Adjuvant Weekly Paclitaxel and Trastuzumab for Node-Negative, ERBB2-Positive Breast Cancer

ECHO or MUGA

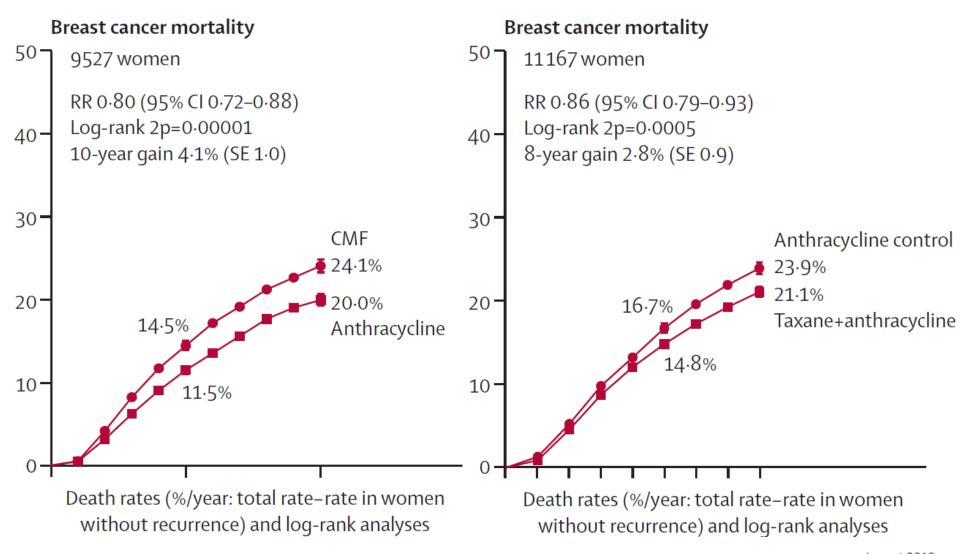

	No. (%)					
Characteristic	Baseline	12 weeks	6 mo	1 y		
VEF reduction from baseline						
<10%		343 (84)	325 (80)	302 (74)		
10%-15%		29 (7)	36 (9)	35 (9)		
≥16%		2 (<1)	5 (1)	7 (2)		

- 2 patients (0.5%) developed grade 3 LVSD.
- 13 patients (3.2%) had significant asymptomatic LVEF decline, 11 of whom completed study treatment.

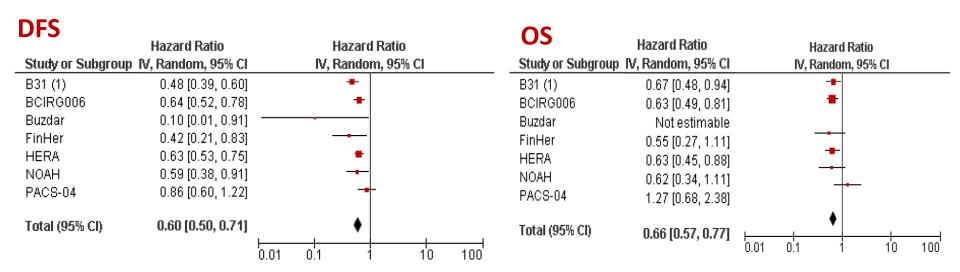
Cardiotoxicity from adjuvant anthracycline and trastuzumab for BC: Clinical considerations

- Prevalence and risk factors
- Strategies to minimize cardiac risk
 - Who can be spared anthracyclines?
 - De-escalated trastuzumab-containing regimens
 - Cardioprotection/biomarkers (other presentations)
- What do guidelines say on baseline assessment and monitoring

Baseline cardiac function assessment as screening procedure: ESMO guidelines

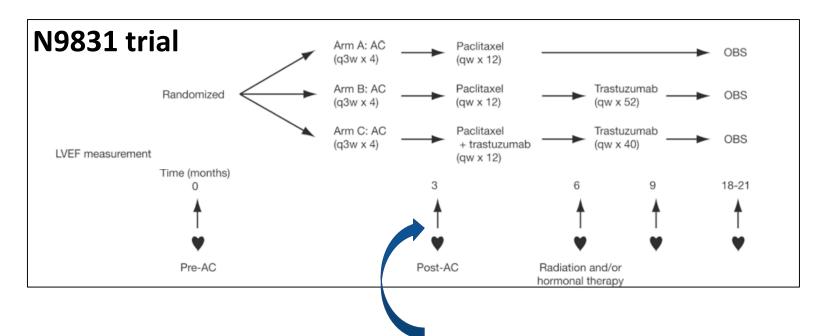


LoE III-B for TnI & other biomarkers


Conclusions

- Advances in screening and adjuvant treatments has led to an improvement in BC survival.
- Anthracycline-based and trastuzumab-containing regimens have become the standard of care for EBC based on a survival advantage, but at the price of increased risk of cardiotoxicity.
- Real-world patients present more frequently with older age and comorbidites as compared to patients in clinical trials.
- De-escalated therapeutic options are now available, allowing for treatment modulation based on baseline risk of relapse and toxicity.
- In this evolving scenario, multidisciplinary collaboration is warranted in order to develop updated personalized monitoring and cardioprotection algorithms.

EBCTCG meta-analyses: anthracycline-based regimens


Trastuzumab for HER2+ early BC: a paradigmatic story of success

STANDARD: 1 year of trastuzumab with chemotherapy (Anthra→Tax+Trast→Trast)

Cardiotoxicity immediately after anthracyclinebased adjuvant CT

Post-AC LVEF level

- decrease >15% in 2.6%
- ≤15% to below the LLN in 2.4%

5% of patients had post-AC LVEF decreases that did not allow the administration of trastuzumab