CORSO DI IMMUNOTERAPIA IN ONCOLOGIA "CARCINOMA DEL RENE E DELLA VESCICA"

Immunoterapia e microambiente

Romano Danesi

UO Farmacologia clinica e Farmacogenetica

Università di Pisa

CORSO DI IMMUNOTERAPIA IN ONCOLOGIA "CARCINOMA DEL RENE E DELLA VESCICA"

Signaling between breast cancer cells (BCCs), mesenchymal stem cells (MSCs), myeloid-derived suppressor cells (MDSCs), and tumor associated macrophages (TAMs) stimulates metastasis

HIF-1 activates the transcription of genes that control multiple steps in the metastatic process

Tumor-released exosomes could mediate immune suppression

Wuzhen Chen et al. J Immunol Res 2017, Article ID 1073947

Tumor cells

JOTERAPIA

RENE

IN ONCOLOGIA

4

NOTERAPIA
DGIATumor-released exosomes could mediate immuneDEL RENE
SCICA"suppression

Tumor cells

Wuzhen Chen et al. J Immunol Res 2017, Article ID 1073947

IN ONCOLOGIA

A diagram depicting the tumor microenvironment

IN ONCOLOGIA

"CAR(

NOMA DEL RENE

Tumor orchestrates T-cell metabolism "CARCINOMA DEL RENE

Kouidhi S, Elgaaied AB and Chouaib S (2017) Front. Immunol. 8:270

IN ONCOLOGIA

E DELLA VESCICA

Interplay between tumour-associated macrophages and cancer cells in established tumours

IN ONCOLOGIA

DELLA VESCICA

CINOMA DEL RENE

CARC

Tumors recruit MSC from the bone marrow

IN ONCOLOGIA

DELLA VESCICA

RENE

Accumulation and expansion of Treg in the tumor INOMA DEL RENE microenvironment

IN ONCOLOGIA

DELLA VESCICA

"CARC

MRNA expression of the best Treg marker in kidney CINOMA DEL RENE DELLA VESCICA"

Mechanisms responsible for 'immunoediting' of tumor cells in the tumor microenvironment

Loss of recognition

IN ONCOLOGIA

DELLA VESCICA

- Interference with the induction of anti-tumor immune responses:
 - Decreased expression of costimulatory molecules on the tumor or APC
 - Alterations in TCR signaling in TIL
 - Death receptor/ligand signaling and 'tumor counterattack'
 - Dysfunction of DC and inadequate cross-presentation of TAA to T cells
 - DC apoptosis in the tumor microenvironment

- Inadequate effector cell function in the tumor microenvironment:
 - Suppression of T-cell responses by Treg
 - Suppression of immune cells by myeloid suppressor cells (MSC)
 - Apoptosis of effector T cells in the tumor and in the periphery
 - Microvesicles (MV, exosomes) secreted by human tumors and inducing apoptosis of CD8+ effector T cells

- Insufficient recognition signals:
 - Downregulation of surface expression of HLA molecules on tumor cells
 - Downregulation of surface TAA displayed by tumor cells: antigen loss variants
 - Alterations in APM component expression in tumor cells or APC
 - Suppression of NK activity in the tumor microenvironment

- Development of immunoresistance by the tumor:
 - Lack of susceptibility to immune effector cells
 - Immunoselection of resistant variants
 - Tumor stem cells

- Mechanisms evolved by tumors for disarming host defenses and escape from the immune control vary in different cancers, and the unique signature of each tumor is reflected by its microenvironment.
- Therefore, understanding of cellular and molecular interactions operative in the tumor microenvironment is of crucial importance.
- Changing of chronic to acute inflammation at the tumor site might be therapeutically beneficial.
- Molecular tools are now available for devising novel and more effective anticancer therapies targeting not only the tumor but also its microenvironment.

CORSO DI IMMUNOTERAPIA IN ONCOLOGIA "CARCINOMA DEL RENE E DELLA VESCICA"

Gli anticorpi monoclonali in immuno-oncologia

Romano Danesi

UO Farmacologia clinica e Farmacogenetica

Università di Pisa

CORSO DI IMMUNOTERAPIA IN ONCOLOGIA "CARCINOMA DEL RENE E DELLA VESCICA" Biological agents targeting PD-1 or PD-L1 in cancer clinical trials

Biological agent	Class	Target
CT-011 (pidilizumab)	Humanized IgG1	PD-1
MK-3475 (lambrolizumab, pembrolizumab)	Humanized IgG4	PD-1
BMS-936558 (nivolumab)	Human IgG4	PD-1
AMP-224 (B7-DC-Fc fusion protein)	PD-L2 lgG2a fusion protein	PD-1
BMS-936559	Human IgG4	PD-L1
MEDI4736 (durvalumab)	Humanized IgG	PD-L1
MPDL3280A (atezolizumab)	Human IgG	PD-L1
MSB0010718C (avelumab)	Human IgG1	PD-L1

Properties of human IgG subclasses OMA DEL RENE

A CH2 CH3 IgG1	hinge	G2 Ig	G3 Ig	G4
	lgG1	IgG2	lgG3	lgG4
General				
Volecular mass (kD)	146	146	170	146
Amino acids in hinge region	15	12	62 ^a	12
nter-heavy chain disulfide bonds	2	4 ^b	11 ^a	2
Vlean adult serum level (g/l)	6.98	3.8	0.51	0.56
Relative abundance (%)	60	32	4	4
Half-life (days)	21	21	7/~21ª	21
Placental transfer	++++	++	++/+++ ^a	+++

Vidarsson G et al. Frontiers in Immunology 2014 (5) A 520: 1-17

IN ONCOLOGIA

VESCICA"

Differenziazione tra moAbs anti-PD-L1: dinamica di interazione con l'antigene

Schematic view of a surface plasmon PEL RENE CICA" **Schematic view of a surface plasmon resonance (SPR) detector**

Hahnefeld, Drewianka, and Herberg. Methods in Molecular Medicine, vol. 94. J. Decker and U. Reischl Eds. Humana Press Inc., Totowa, NJ

IN ONCOLOGIA

Hahnefeld, Drewianka, and Herberg. Methods in Molecular Medicine, vol. 94. J. Decker and U. Reischl Eds. Humana Press Inc., Totowa, NJ

"CARC

CORSO DI IMMUNOTERAPIA IN ONCOLOGIA "CARCINOMA DEL RENE E DELLA VESCICA" Activation of ADCC/CDC by immunecheckpoint inhibitors

Checkpoint Inhibitor	Killer Isotype	Nonkiller Isotype
Anti-CTLA-4	Ipilimumab (IgG1)	Tremelimumab (IgG2)
Anti-PD-1	Pidilizumab (IgG1)	Nivolumab (IgG4), pembrolizumab (IgG4)
Anti-PD-L1	Avelumab	BMS-936559 (IgG4), Atezolizumab
		Durvalumab

ADCC = antibody-dependent cell-mediated cytotoxicity; CDC = complement dependent cytotoxicity; CTLA = cytotoxic T-lymphocyte antigen; Ig = immunoglobulin; PD = programmed cell death protein.

SO DI IMMUNOTERAPIA IN ONCOLOGIA RCINOMA DEL RENE DELLA VESCICA"

Ju Yeon Lee et al. Nature Communications 2016 DOI: 10.1038/ncomms13354

Binding surface of PD-1 and binding epitopes of avelumab, BMS-936559, and durvalumab on PD-L1

26

CORSO DLIMMUNOTERAPIA IN ONCOLOGIA CARCINOMA DEL RENE E DELLA VESCICA" Binding kinetics of anti-PD-L1 moAbs and PD-L1

CORSO DI IMMUNOTERAPIA IN ONCOLOGIA "CARCINOMA DEL RENE E DELLA VESCICA" Binding kinetics of anti-PD-L1 MAbs and PD-L1

MAbs	ka ¹ (10 ⁴ /Ms)	$kd^{2}(10^{-4}/s)$	KD (nM)
atezolizumab	8.93	1.56	1.75
durvalumab	42.8	2.85	0.667
avelumab	161	0.753	0.0467
BMS-936559	105	8.68	0.83

¹ ka, association rate constant.

² kd, dissociation rate constant.

CORSO DI IMMUNOTERAPIA IN ONCOLOGIA "CARCINOMA DEL RENE E DELLA VESCICA"

Kd of PD-L1 and PD-L2 for PD-1

PD-1

- PD-1:PD-L1
- 270-526 nM Youngnak et al⁴⁹ (Scatchard plots analysis)
 590-770 nM Butte et al⁴⁸ (Scatchard plots analysis)
 770 nM Butte et al⁴⁸ (equilibrium binding[†])
 PD-1:PD-L2
 - 89–106 nM Youngnak et al⁴⁹ (Scatchard plots analysis) 590 nM Butte et al⁴⁸ (equilibrium binding[†])

Kathleen M. Mahoney et al. Clin Ther. 2015;37:764–782

CORSO DI IMMUNOTERAPIA IN ONCOLOGIA "CARCINOMA DEL RENE E DELLA VESCICA"

Humanization of therapeutic antibodies has reduced their immunogenicity

lan N. Foltz et al. Circulation. 2013;127:2222-2230

American Heart Association,

Copyright © American Heart Association, Inc. All rights reserved.

Comparison table of moAbs anti-PD-1

	Nivolumab	Pembrolizumab	Pidilizumab	AMP-224
Humanized		\checkmark	\checkmark	
Fully human	\checkmark			
lg subclass	lgG4	lgG4	lgG1	Fusion protein
ADCC/CDC			\checkmark	\checkmark
K _D	+/++	++	+	?

CORSO DI IMMUNOTERAPIA IN ONCOLOGIA "CARCINOMA DEL RENE E DELLA VESCICA"

Comparison table of moAbs anti-PD-L1

	Atezolizumab	Durvalumab	Avelumab	BMS-936559
Humanized	\checkmark			
Fully human		\checkmark	\checkmark	\checkmark
lg subclass	lgG1 modified	lgG1 modified	lgG1	lgG4
ADCC/CDC			\checkmark	
K _D	+/++	++	+++	++

Interazioni VEGF, PD-1/PD-L1 e chemioterapia

CORSO DI IMMUNOTERAPIA IN ONCOLOGIA CARCINOMA DEL RENE E DELLA VESCICA" Chemotherapy as an adjuvant for antitumor immunity

Cédric Ménard et al., Cancer Immunol Immunother (2008) 57:1579-1587

O DI IMMUNOTERAPIA IN ONCOLOGIA CINOMA DEL RENE DELLA VESCICA" VEGF-A promotes tumor-induced immunosuppression

VEGF-A promotes T-cell exhaustion, proliferation of immunosuppressi ve cells, and limits tumor Tcell recruitment

- Immune checkpoint inhibitors have profoundly changed the management of selected diseases, including melanoma, NSCLC and renal cancer
- The reason of lack of activity in other cancers needs to be evaluated.
- Response biomarkers in addition to PD-L1 in cancer cells should be identified.
- Anti-PD-1 and anti-PD-L1 antibodies can be integrated into current treatment regimens