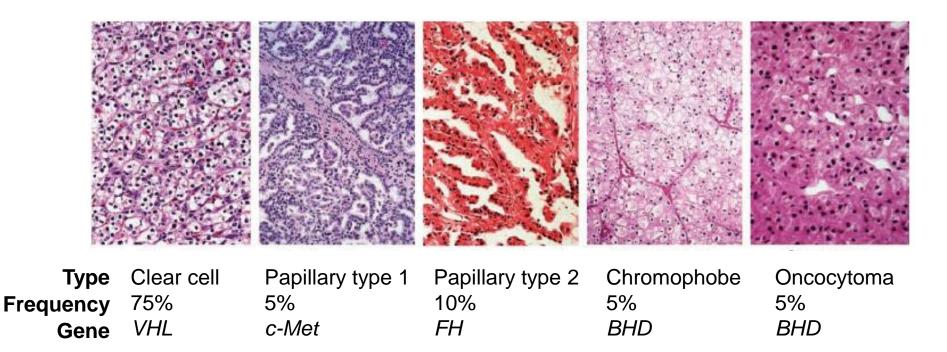


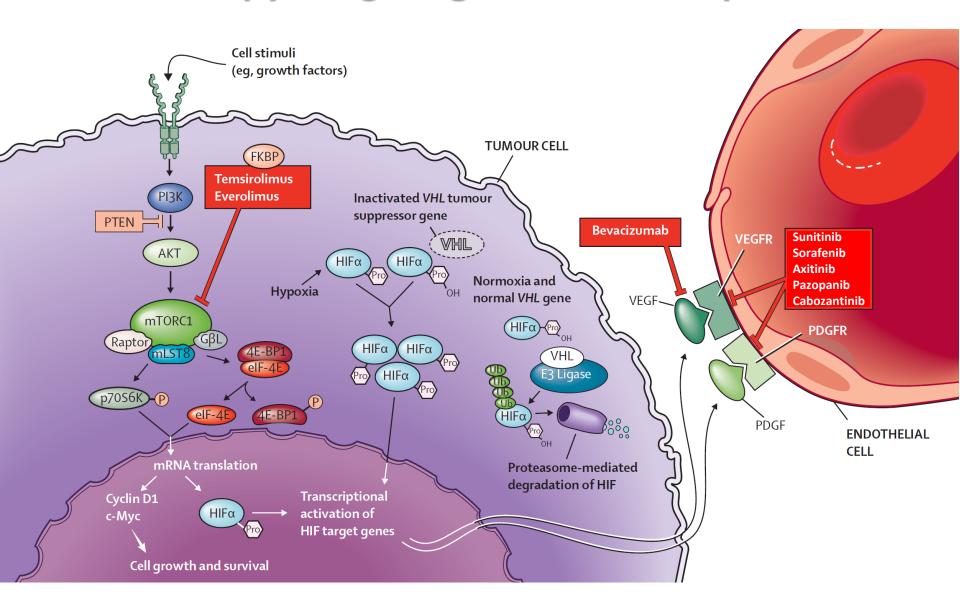
Incontri di aggiornamento del Dipartimento Oncologico

Responsabile Scientifico: Dott.ssa Stefania Gori

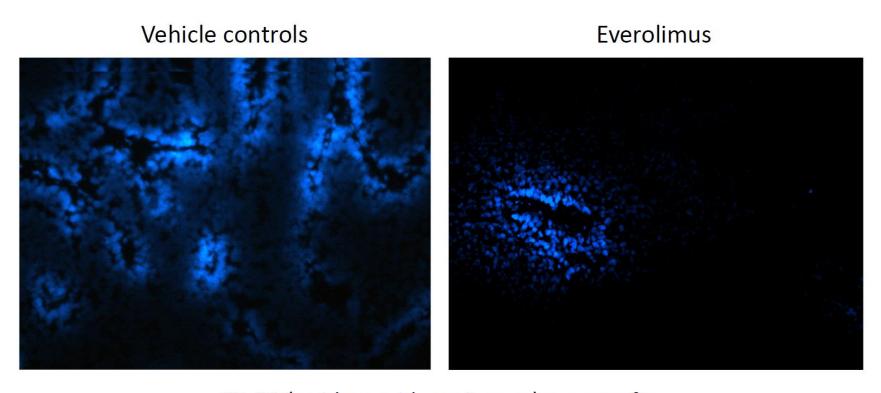
6° INCONTRO - Martedì 29 novembre 2016


Oncologia traslazionale - 2^a edizione

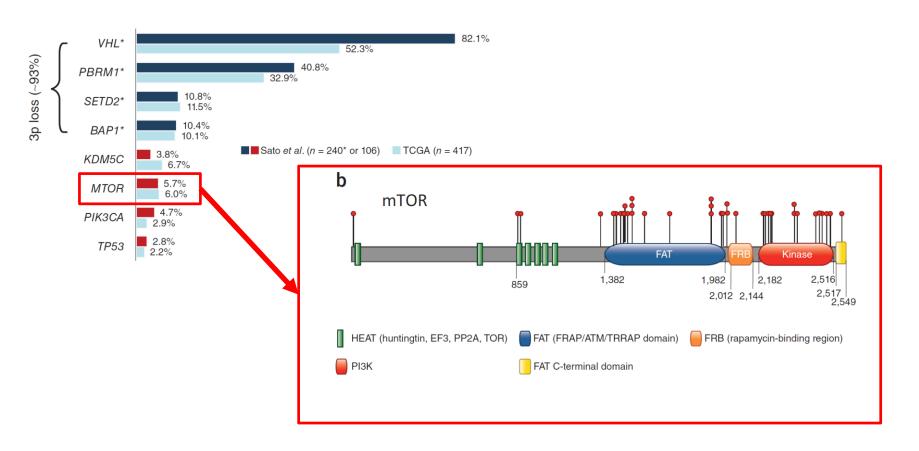
La via del segnale PI3K/Akt/mTOR: Inibitori di mTOR nel carcinoma renale


Alessandro Inno

Ospedale Sacro Cuore Don Calabria Negrar - Verona


Human renal epithelial neoplasms

RCC therapy: Targeting VEGF at Multiple Levels


Angiogenesis Inhibition Through mTOR Blockade

KB-31 (epidermoid carcinoma) xenografts

Significant reduction in microvessel density following Everolimus treatment in a primary human tumour (tumour edges shown) in a xenograft model

mTOR is one of the most commonly mutated genes

The mutations in *mTOR* clustered in regions encoding the conserved FAT and kinase domains of the mTOR protein, where they likely destabilize the intrinsecally restricted conformation of the protein, thus leading to increased mTORC1 signalling

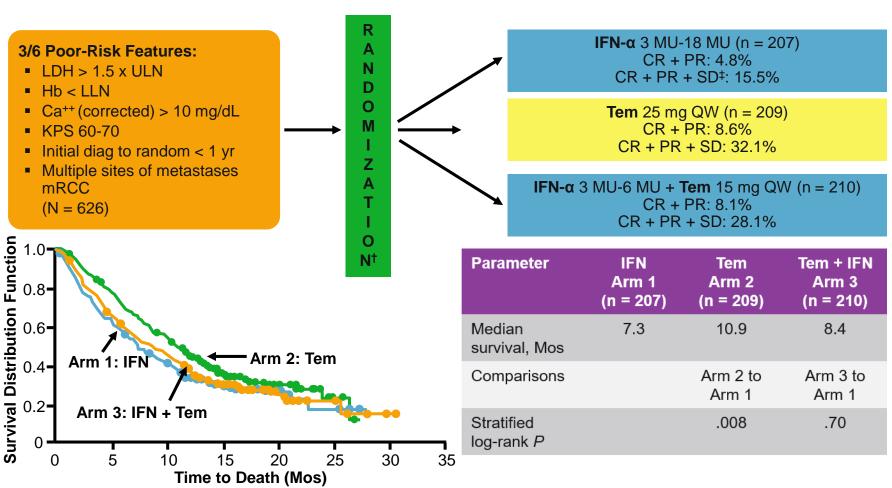
RCC is also a metabolic disease

Integrated mRNA expression and proteomic data suggested a global metabolic shift that involved:

- increased dependence on the pentose phosphate shunt,
- decreased activity of AMP-activated protein kinase (AMPK) and the Krebs cycle,
- increased glutamine transport and
- higher fatty acid production, which all correlate with disease aggressiveness

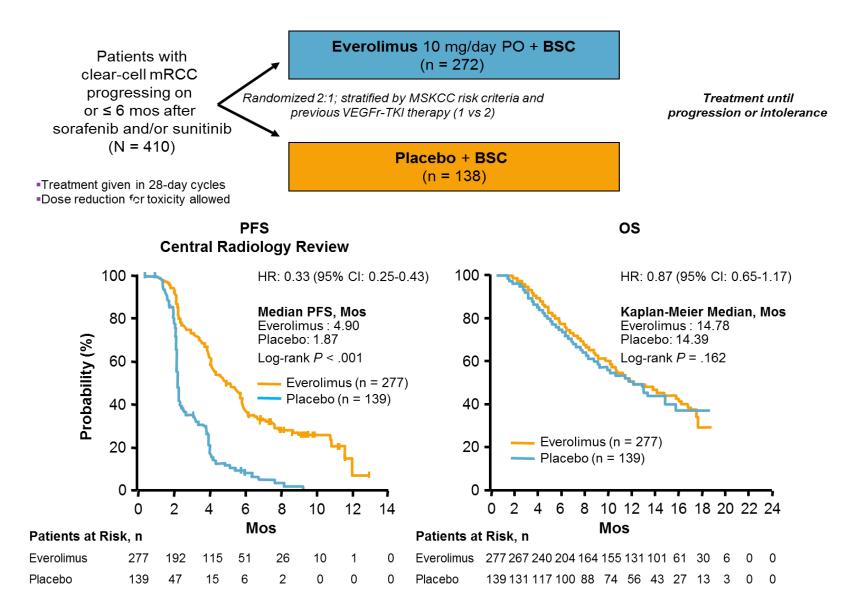
Allosteric mTORC1 inhibitors (i.e., Temsirolimus and Everolimus) thus affect this global metabolic shift

mTOR inhibitors for RCC


Temsirolimus

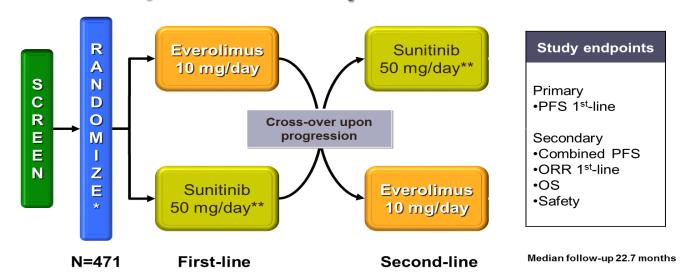
I linea nei pazienti «poor risk»

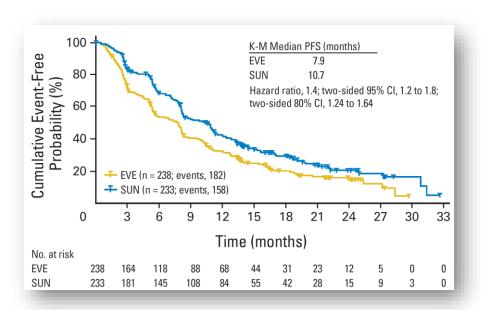
Everolimus

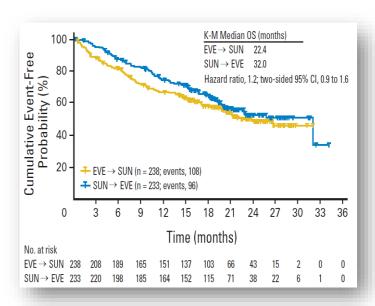

Dopo fallimento di terapia mirata anti-VEGF

1st line Temsirolimus in Poor-Risk RCC*

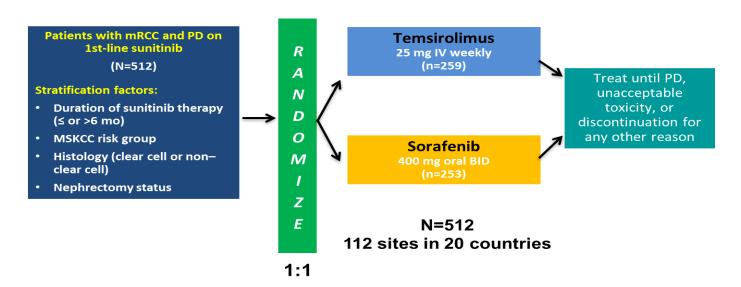
*Modified MSKCC poor risk. †Stratified by country and nephrectomy status. ‡SD ≥ 24 wks.

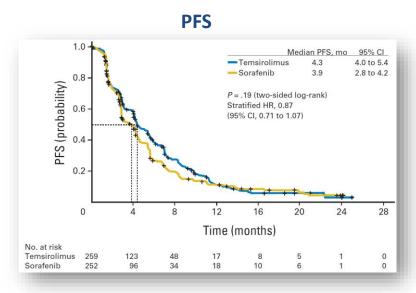

Everolimus vs Placebo in Pretreated pts: RECORD-1

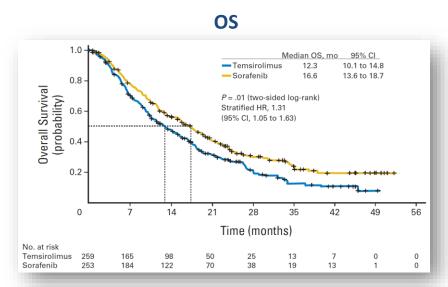

Main Adverse Events with mTOR Inhibitors


	Everolimus $(n = 274)$ [33]		Temsirolimus $(n = 208)$ [5]	
	All grades	Grades 3/4	All grades	Grade 3 or 4
Pulmonary				
Cough	30	0.7/0	26	1
Dyspnoea	24	6.2/1.5	28	9
NIP	9.9	2.6/0	2^{a}	1 ^a
Non-pulmonary				
Stomatitis	38	4.0/0.4	20	1
Asthenia	33	2.6/0.7	51	11
Fatigue	31	5.5/0	NA	NA
Diarrhoea	30	1.5/0	27	1
Rash	29	1.1/0	47	4
Nausea	26	1.5/0	37	2
Anorexia	25	1.5/0	32	3
Peripheral oedema	25	0.7/0	27	2
Vomiting	20	2.2/0	19	2
Pyrexia	20	0.7/0	24	1
Mucosal inflammation	19	1.5/0	NA	NA
Headache	19	0.7/0.4	15	1
Abdominal pain	9.5	3.3/0	21	4
Laboratory investigations				
Anaemia (decreased haemoglobin)	38	9.5/0.7	45	20
Hypercholesterolaemia	20	3.3/0	24	1
Hypertriglyceridaemia	15	1.1/0	27	3
Hyperglycaemia	12	6.2/0	26	11
Raised creatinine	9.5	1.1/0	14	3
Thrombocytopaenia	6.6	1.5/0	14	1

VEGFR-TKI/mTORi Sequence: RECORD-3 trial


*Stratified by MSKCC prognostic factors; **4 weeks on, 2 weeks off.





Motzer RJ, et al. J Clin Oncol 2014; 32:2765-2772

2nd line Temsirolims vs Sorafenib: INTORSECT trial

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

NOVEMBER 5, 2015

VOL. 373 NO. 19

Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma

R.J. Motzer, B. Escudier, D.F. McDermott, S. George, H.J. Hammers, S. Srinivas, S.S. Tykodi, J.A. Sosman, G. Procopio, E.R. Plimack, D. Castellano, T.K. Choueiri, H. Gurney, F. Donskov, P. Bono, J. Wagstaff, T.C. Gauler, T. Ueda, Y. Tomita, F.A. Schutz, C. Kollmannsberger, J. Larkin, A. Ravaud, J.S. Simon, L.-A. Xu, I.M. Waxman, and P. Sharma, for the CheckMate 025 Investigators*

ABSTRACT

BACKGROUND

Nivolumab, a programmed death 1 (PD-1) checkpoint inhibitor, was associated with encouraging overall survival in uncontrolled studies involving previously treated patients with advanced renal-cell carcinoma. This randomized, open-label, phase 3 study compared nivolumab with everolimus in patients with renal-cell carcinoma who had received previous treatment.

METHODS

A total of 821 patients with advanced clear-cell renal-cell carcinoma for which they had received previous treatment with one or two regimens of antiangiogenic therapy were randomly assigned (in a 1:1 ratio) to receive 3 mg of nivolumab per kilogram of body weight intravenously every 2 weeks or a 10-mg everolimus tablet orally once daily. The primary end point was overall survival. The secondary end points included the objective response rate and safety.

RESULTS

The median overall survival was 25.0 months (95% confidence interval [CI], 21.8 to not estimable) with nivolumab and 19.6 months (95% CI, 17.6 to 23.1) with everolimus. The Copyright © 2015 Massachusetts Medical Society. hazard ratio for death with nivolumab versus everolimus was 0.73 (98.5% CL 0.57 to 0.93: P=0.002), which met the prespecified criterion for superiority (P≤0.0148). The objective response rate was greater with nivolumab than with everolimus (25% vs. 5%; odds ratio, 5.98 [95% CI, 3.68 to 9.72]; P<0.001). The median progression-free survival was 4.6 months (95% CI, 3.7 to 5.4) with nivolumab and 4.4 months (95% CI, 3.7 to 5.5) with everolimus (hazard ratio, 0.88; 95% CI, 0.75 to 1.03; P=0.11). Grade 3 or 4 treatment-related adverse events occurred in 19% of the patients receiving nivolumab and in 37% of the patients receiving everolimus; the most common event with nivolumab was fatigue (in 2% of the patients), and the most common event with everolimus was anemia (in 8%).

CONCLUSIONS

Among patients with previously treated advanced renal-cell carcinoma, overall survival was longer and fewer grade 3 or 4 adverse events occurred with nivolumab than with everolimus. (Funded by Bristol-Myers Squibb; CheckMate 025 ClinicalTrials.gov number, NCT01668784.)

The authors' full names, academic degrees, and affiliations are listed in the Appendix. Address reprint requests to Dr. Motzer at Memorial Sloan Kettering Cancer Center, Memorial Hospital, 1275 York Ave., New York, NY 10021, or at motzerr@mskcc.org; or to Dr. Sharma at M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, or at padsharma@mdanderson.org.

*A complete list of investigators in the CheckMate 025 study is provided in the Supplementary Appendix, available at

This article was published on September 25, 2015, and updated on January 14, 2016, at NEJM.org.

N Engl J Med 2015;373:1803-13. DOI: 10.1056/NEIMoa1510665

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma

T.K. Choueiri, B. Escudier, T. Powles, P.N. Mainwaring, B.I. Rini, F. Donskov, H. Hammers, T.E. Hutson, J.-L. Lee, K. Peltola, B.J. Roth, G.A. Bjarnason, L. Géczi, B. Keam, P. Maroto, D.Y.C. Heng, M. Schmidinger, P.W. Kantoff, A. Borgman-Hagey, C. Hessel, C. Scheffold, G.M. Schwab, N.M. Tannir, and R.J. Motzer, for the METEOR Investigators*

ABSTRACT

BACKGROUND

Cabozantinib is an oral, small-molecule tyrosine kinase inhibitor that targets vascular endothelial growth factor receptor (VEGFR) as well as MET and AXL, each of which has been implicated in the pathobiology of metastatic renal-cell carcinoma or in the development of resistance to antiangiogenic drugs. This randomized, open-label, phase 3 trial evaluated the efficacy of cabozantinib, as compared with everolimus, in patients with renal-cell carcinoma that had progressed after VEGFR-targeted therapy.

METHODS

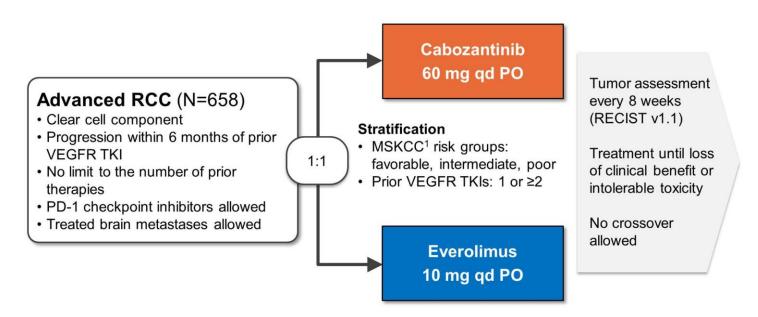
We randomly assigned 658 patients to receive cabozantinib at a dose of 60 mg daily or everolimus at a dose of 10 mg daily. The primary end point was progression-free survival. Secondary efficacy end points were overall survival and objective response rate.

RESULTS

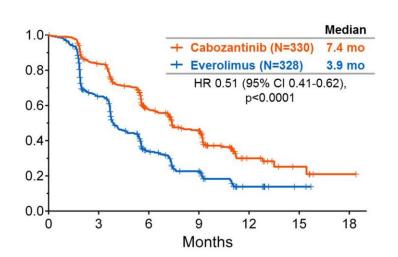
Median progression-free survival was 7.4 months with cabozantinib and 3.8 months with everolimus. The rate of progression or death was 42% lower with cabozantinib than with everolimus (hazard ratio, 0.58; 95% confidence interval [CI] 0.45 to 0.75; P<0.001). The objective response rate was 21% with cabozantinib and 5% with everolimus (P<0.001). A planned interim analysis showed that overall survival was longer with cabozantinib than with everolimus (hazard ratio for death, 0.67; 95% CI, 0.51 to 0.89; P=0.005) but did not cross the significance boundary for the interim analysis. Adverse events were managed with dose reductions; doses were reduced in 60% of the patients who received cabozantinib and in 25% of those who received everolimus. Discontinuation of study treatment owing to adverse events occurred in 9% of the patients who received cabozantinib and in 10% of those who received everolimus.

CONCLUSIONS

Progression-free survival was longer with cabozantinib than with everolimus among patients with renal-cell carcinoma that had progressed after VEGFR-targeted therapy. (Funded by Exelixis; METEOR ClinicalTrials.gov number, NCT01865747.)


The authors' full names, academic degrees, and affiliations are listed in the Appendix. Address reprint requests to Dr. Choueiri at the Dana-Farber Cancer Institute, 450 Brookline Ave. (DANA 1230). Boston, MA 02215, or at toni_choueiri@ dfci.harvard.edu.

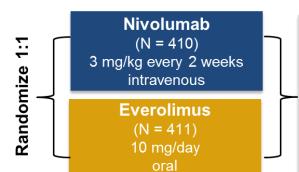
*A complete list of investigators in the Metastatic RCC Phase 3 Study Evaluating Cabozantinib versus Everolimus (METEOR) is provided in the Supplementary Appendix, available at NEJM.org.

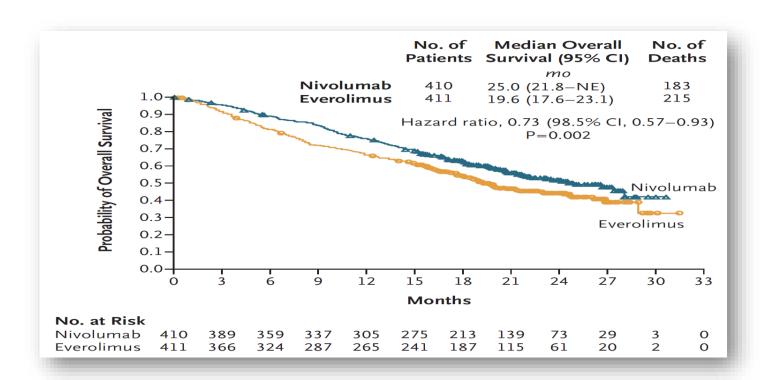

This article was published on September 25, 2015, at NEJM.org

N Engl J Med 2015;373:1814-23. DOI: 10.1056/NEJMoa1510016 Copyright @ 2015 Massachusetts Medical Society.

Cabozantinib vs Everolimus: METEOR

Progression-Free Survival per IRC1


Overall Survival


Nivolumab vs Everolimus: Checkmate 025

Enrolled patients

- Previously treated advanced or metastatic clear-cell RCC
- 1 or 2 prior antiangiogenic treatments

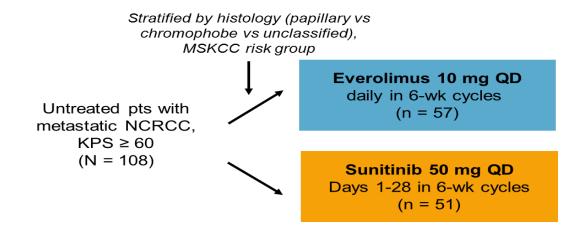
- Treat until progression or intolerable toxicity
- Treatment beyond progression was permitted if drug was tolerated and clinical benefit was noted

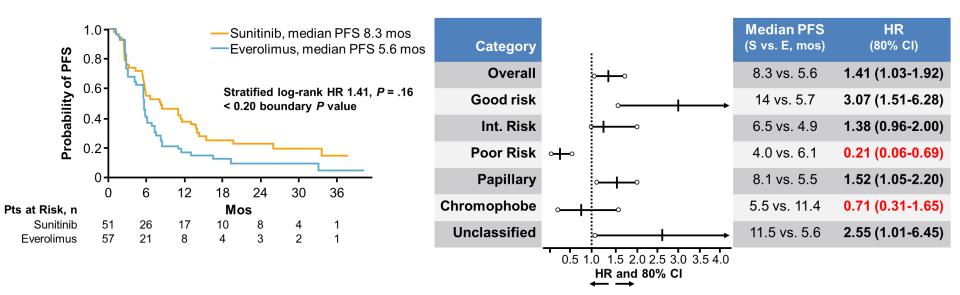
mTOR Inhibitors: Future Perspectives in RCC

1. Investigation in Other Histologies

2. Molecular Predictive Factors

3. Combination with Other Agents

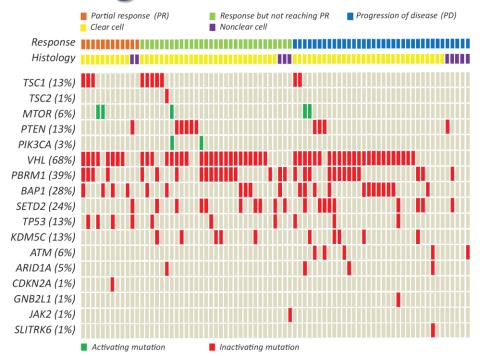

mTOR Inhibitors: Future Perspectives in RCC


1. Investigation in Other Histologies

2. Molecular Predictive Factors

3. Combination with Other Agents

Non Clear-Cell Histology: the ASPEN trial


mTOR Inhibitors: Future Perspectives in RCC

1. Investigation in Other Histologies

2. Molecular Predictive Factors

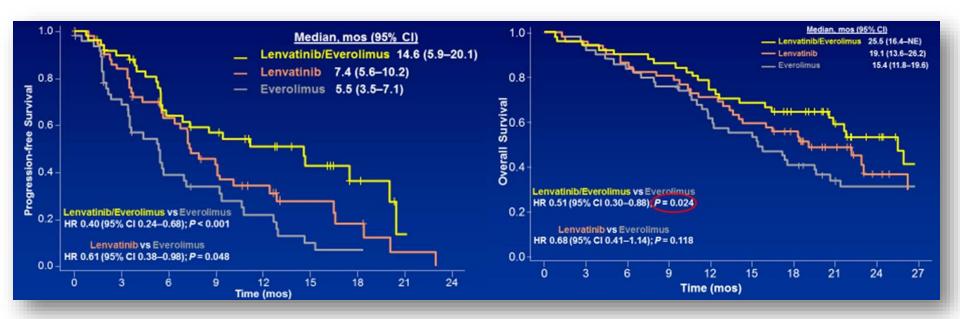
3. Combination with Other Agents

Looking for Predictive Factors

Patients, %	MTOR, TSC1 and TSC2 mutation status			
	CR/PR >6 months, n=12	Primary refractory, n=36	P value	OR
Mutation detected	42	11	0.03	5.28
Mutation not detected	58	89		


mTOR Inhibitors: Future Perspectives in RCC

1. Investigation in Other Histologies


2. Molecular Predictive Factors

3. Combination with Other Agents

Combination: Everolimus + Lenvatinib

- Primary endpoint: PFS with lenvatinib ± everolimus vs everolimus alone
- Secondary endpoints: PFS with combination vs lenvatinib alone, ORR, OS, safety/tolerability

Combination: Everolimus + Lenvatinib

	Nivolumab ¹	Cabozantinib ²	Lenvatinib ³
RR (%)	25	21	35
PFS (mos)	4.6	7.4	12.8
OS (mos)	25	21.4	25.5
Dose reductions (%)	NA	60	71
Discontinuation due to AEs (%)	8	9	24
Toxicity	G3 18% G4 1%	G3/4 68%	G3 57% G4 14%

^{1.} Motzer RJ, et al. N Engl J Med 2015; 373:1803-1813.

^{2.} Chouieri TK, et al. Lancet Oncol 2016; 17:917-927.

^{3.} Motzer RJ, et al. Lancet Oncol 2015; 16:1473-1482.

GRAZIE PER L'ATTENZIONE

alessandro.inno@sacrocuore.it