

# SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA

Azienda Unità Sanitaria Locale della Romagna



Trattamento della malattia avanzata oncogene-addicted

### Quale sequenza terapeutica nella malattia EGFR+

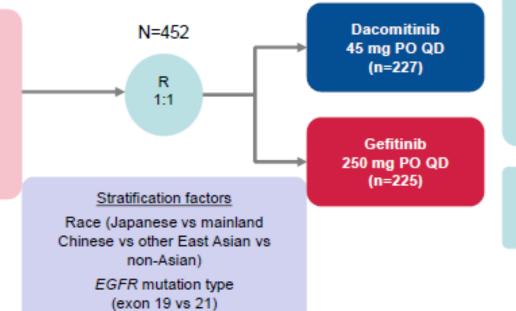
Chiara Bennati
AUSL della Romagna
Ravenna, Italy

### A matter of fact

- ✓ EGFR TKIs are better than chemotherapy (10 randomized studies)
- ✓ Ist gen TKIs are equal in efficacy
- ✓ Expected mPFS ranges from 10 to 14 mo (no OS advantage due to crossover)
- √ Treatment beyond RECIST progression (ASPIRATION: extension of 4 mo)
- $\checkmark\sim$  50% are T790M mut + at progression and should be treated with osimertinib
- ✓ For T790M mut the standard of care is platinum chemotherapy (without continuation of TKI)

### **Outline**

- ✓ Can we improve PFS/OS with 2 nd/3 rd generation *EGFR* TKIs?
- ARCHER 1050
- FLAURA
- ✓ What is the impact of the "optimal" sequence on resistance mechanisms?
- After Osimertinib in I st line
- Activation of different pathways/SCLC transition
- ✓ Can we improve treatment outcome with combination therapy?
- Dealing with angiogenesis
- ✓ What is the role of immunotherapy?
- See ESMO guidelines


# **New options for first-line NSCLC**

**ARCHER 1050: Study Design** 

 Randomized, open-label, phase 3 study to evaluate dacomitinib as an alternative first-line treatment for patients with advanced NSCLC with an

EGFR-activating mutation

- Advanced NSCLC with EGFRactivating mutation(s)
- No prior systemic treatment of advanced NSCLC
- No central nervous system metastases
- No prior EGFR TKI or other TKI
- ECOG performance status of 0 or 1



#### Primary endpoint

PFS by blinded independent review

- ≥256 PFS events
- PFS HR ≤0.667 (50%†)
- 90% power
- 1-sided α=0.025
- Median PFS: 14.3 vs 9.5 months

#### Secondary endpoints

PFS (investigator assessed), ORR, DOR, TTF, OS, Safety, PROs

# **ARCHER 1050** dacomitinib versus gefitinib

# PFS by BIRC

14.7 vs 9.2 mo

Number of events, n (%)

30

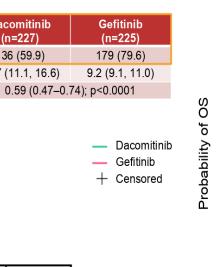
Median PFS (95% CI)

HR (95% CI)

PFS rate

30.6% versus 9.6%

24


18

Time (months)

12

Probability of PFS

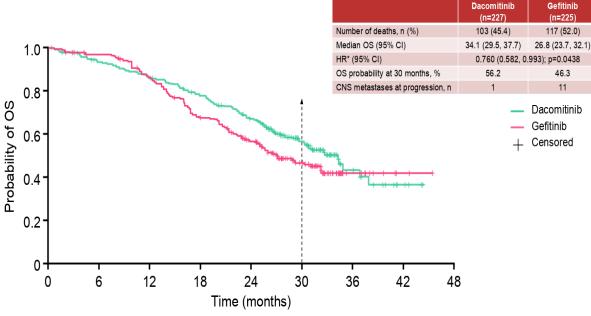
0+



Wu YL, et al. Lancet Oncol 2017

42

36


Dacomitinib

(n=227)

136 (59.9)

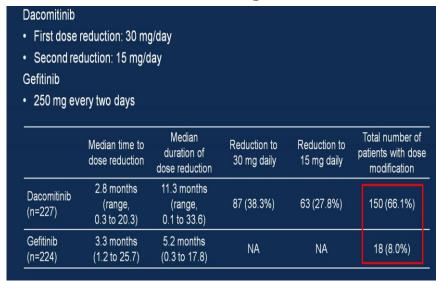
14.7 (11.1, 16.6)

OS 34.1 vs 26.8 mo

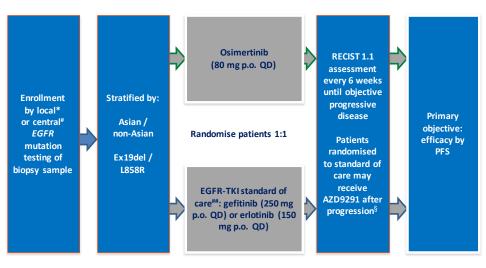


Mok T, et al. JCO 2018

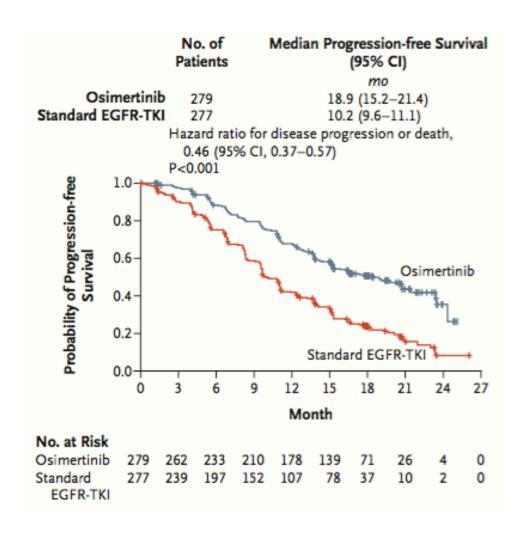
# Impact of dacomitinib on other EGFR-TKIs usage

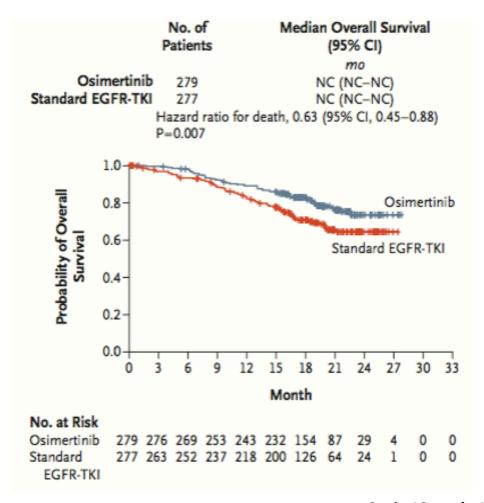

#### More adverse events in daco arm

|                              | Dacomitinib (N = 227) |           |           |           |         | Gefitinib (N = 224) |            |            |           |          |         |         |
|------------------------------|-----------------------|-----------|-----------|-----------|---------|---------------------|------------|------------|-----------|----------|---------|---------|
| Adverse event                | Any Grade             | Grade 1   | Grade 2   | Grade 3   | Grade 4 | Grade 5             | Any Grade  | Grade 1    | Grade 2   | Grade 3  | Grade 4 | Grade 5 |
| Number of patients (percent) |                       |           |           |           |         |                     |            |            |           |          |         |         |
| Diarrhea                     | 198 (87.2)            | 113(49.8) | 65 (28.6) | 19 (8.4)  | 0       | 1 (0.4)             | 125 (55.8) | 103 (46.0) | 20 (8.9)  | 2 (0.9)  | 0       | 0       |
| Paronychia                   | 140 (61.7)            | 46 (20.3) | 77 (33.9) | 17 (7.5)  | 0       | 0                   | 45 (20.1)  | 30 (13.4)  | 12 (5.4)  | 3 (1.3)  | 0       | 0       |
| Dermatitis acneiform         | 111 (48.9)            | 37 (16.3) | 43 (18.9) | 31 (13.7) | 0       | 0                   | 64 (28.6)  | 43 (19.2)  | 21 (9.4)  | 0        | 0       | 0       |
| Stomatitis                   | 99 (43.6)             | 51 (22.5) | 40 (17.6) | 8 (3.5)   | 0       | 0                   | 40 (17.9)  | 33 (14.7)  | 6 (2.7)   | 1 (0.4)  | 0       | 0       |
| Decreased appetite           | 70 (30.8)             | 40 (17.6) | 23 (10.1) | 7 (3.1)   | 0       | 0                   | 55 (24.6)  | 48 (21.4)  | 6 (2.7)   | 1 (0.4)  | 0       | 0       |
| Dry skin                     | 63 (27.8)             | 42 (18.5) | 18 (7.9)  | 3 (1.3)   | 0       | 0                   | 38 (17.0)  | 35 (15.6)  | 3 (1.3)   | 0        | 0       | 0       |
| Weight decreased             | 58 (25.6)             | 31 (13.7) | 22 (9.7)  | 5 (2.2)   | 0       | 0                   | 37 (16.5)  | 22 (9.8)   | 14 (6.3)  | 1 (0.4)  | 0       | 0       |
| Alopecia                     | 53 (23.3)             | 41 (18.1) | 11 (4.8)  | 1 (0.4)   | 0       | 0                   | 28 (12.5)  | 26 (11.6)  | 2 (0.9)   | 0        | 0       | 0       |
| Cough                        | 48 (21.1)             | 39 (17.2) | 9 (4.0)   | 0         | 0       | 0                   | 42 (18.8)  | 36 (16.1)  | 5 (2.2)   | 1 (0.4)  | 0       | 0       |
| Pruritus                     | 45 (19.8)             | 27 (11.9) | 17 (7.5)  | 1 (0.4)   | 0       | 0                   | 31 (13.8)  | 24 (10.7)  | 4 (1.8)   | 3 (1.3)  | 0       | 0       |
| ALT increased                | 44 (19.4)             | 37 (16.3) | 5 (2.2)   | 2 (0.9)   | 0       | 0                   | 88 (39.3)  | 45 (20.1)  | 24 (10.7) | 19 (8.5) | 0       | 0       |


#### In vitro sensitivity of Ba/F3 cells expressing EGFR mutations to various TKIs

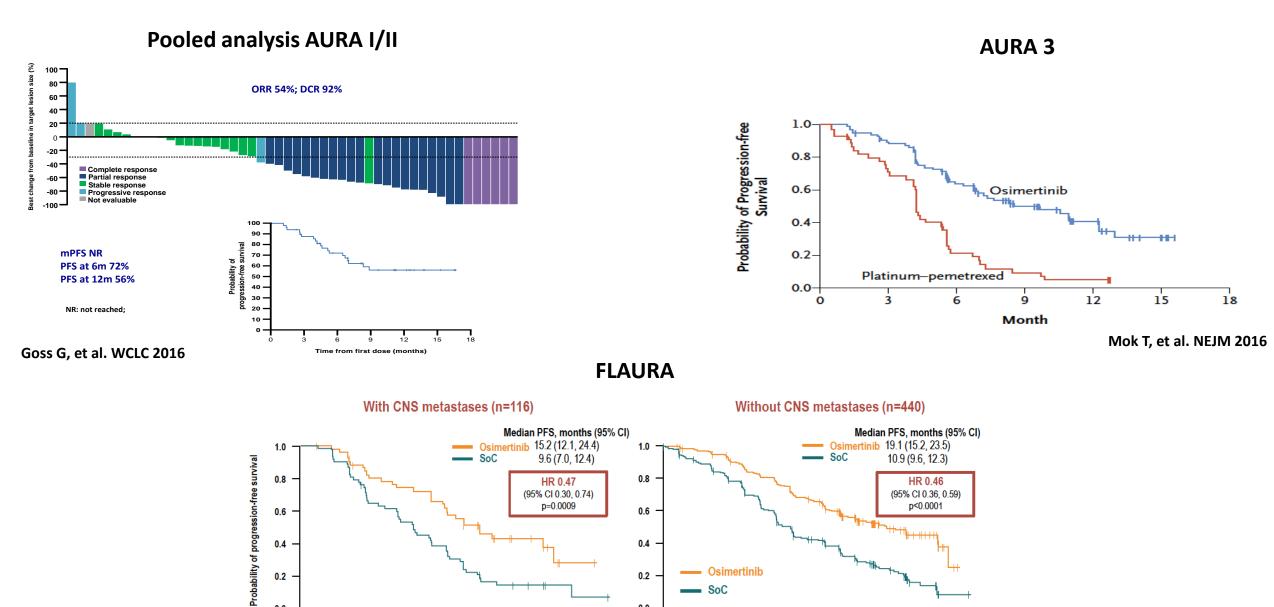
| F.,, a., | Catanani     | Mutations          | First ge   | eneration   | S        | econd generati | Third ge  | neration    |            |
|----------|--------------|--------------------|------------|-------------|----------|----------------|-----------|-------------|------------|
| Exon     | Category     | Mutations          | Gefitinib  | Erlotinib   | Afatinib | Dacomitinib    | Neratinib | Osimertinib | Rociletini |
| 18       | Del18        | delE709_T710insD   | 882        | 884         | 1.7      | 29             | 27        | 93          | 999        |
|          | E709X        | E709K              | 187        | 215         | 0.7      | 16             | 6         | 62          | 706        |
|          | G719X        | G719A              | 213        | 167         | 0.9      | 6              | 1.1       | 53          | 214        |
| 19       | Del19        | delE746_A750       | 4.8        | 4.9         | 0.9      | <1             | 60        | 1.1         | 19         |
|          | Del19        | delE746_S752insV   | 306        | 14          | 0.2      | 1.4            | 86        |             |            |
|          | Del19        | delL747_A750insP   | 7.4        | 13          | 1        | 1.6            | 30        |             |            |
|          | Del19        | delL747_P753insS   | 4.1        | 5.4         | 2        | 1.9            | 38        |             |            |
|          | Del19        | del\$752_I759      | 35         | 7.9         | 0.2      | 2              | 6.7       |             |            |
|          | Ins19        | 1744_K745insKIPVAI | 400        |             | 7        |                |           | •           |            |
|          | Ins19        | K745_E746insTPVAIK | 100        |             | 0.9      |                |           |             |            |
| 20       | Ins20        | A763_Y764insFQEA   | 174        | 48          | 3.7      |                |           | 44          | 67:        |
|          | Ins20        | Y764_V765insHH     | >1000      | 3845        | 79       |                |           | 237         | 1730       |
|          | Ins20        | M766_A767insAI     |            | 3403        | 79       |                |           |             |            |
|          | Ins20        | V769_D770insASV    | 3100       | 4400        | 72       | 230            | 48        | 333         | 5290       |
|          | Ins20        | D770_N771insNPG    | 3356       | 3700        | 72       |                | 230       | 42          | 262        |
|          | Ins20        | D770_N771insSVD    |            | 3187        | 86       |                |           |             |            |
|          | Ins20        | H773_V774insH      |            | >10 000     | 268      |                | 550       |             |            |
|          | 57681        | 57681              | 315        | 250         | 0.7      |                |           | 49          |            |
|          | T790M        | T790M+delE746_A750 | 8300       | >10 000     | 64       | 140            |           | 3           | 28         |
|          | T790M        | T790M+L858R        | >10 000    | >10 000     | 119      | 300            |           | 21          | 13         |
| 21       | L858R        | L858R              | 26         | 16          | 4        | 2.6            | 1.4       | 9           | 140        |
|          | L861Q        | L861Q              | 170        | 103         | 0.5      |                | 3.3       | 9           |            |
| GFR v    | wild type wi | th interleukin-3   | 9350       | >10 000     | >100     | >1000          | >1000     | 3078        | 1549       |
|          | drug conce   |                    | (448-2717) | (2717-4040) | (69-130) | (166-238)      | (N/A-132) | (400-600)   | N/A-N/A    |


#### Dose Modification higher in daco arm




#### No data on BM and osimertinib data




# FLAURA: PFS and OS Undoubtedly a positive study





Soria JC et al., NEJM 2017

# **Osimertinib CNS activity**



Ramalingam S, et al. ESMO 2017

27

24

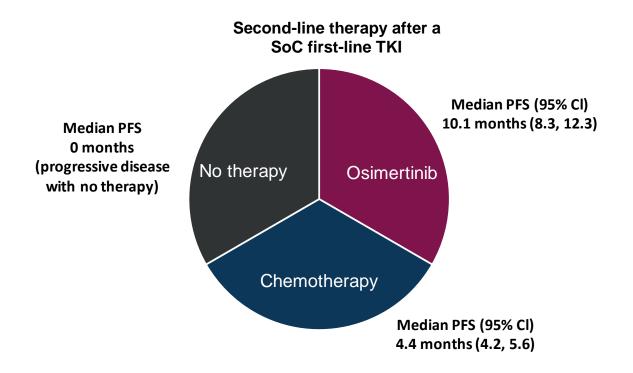
0.4

0.2

Osimertinib

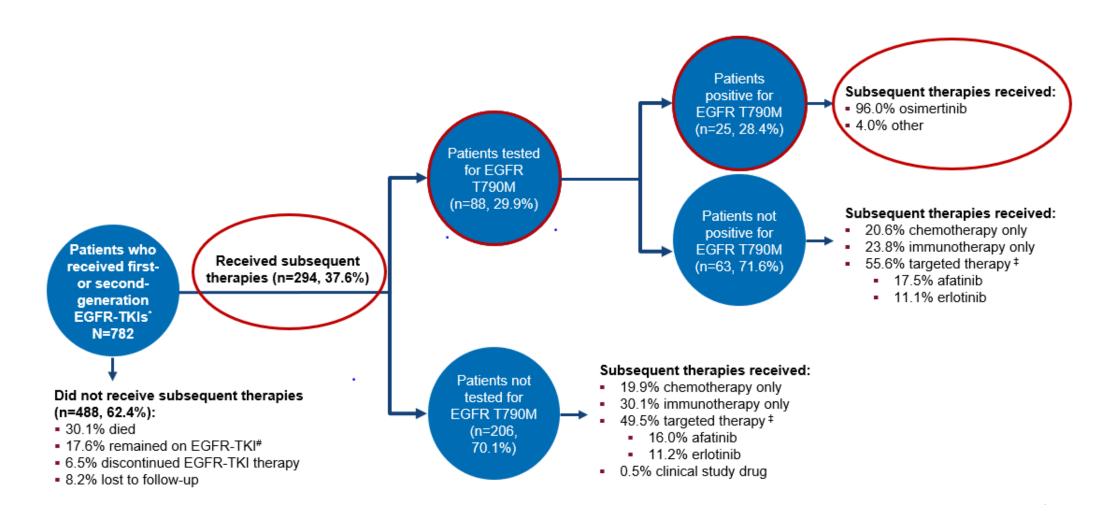
SoC

### **Sequence matters**




# **Key factors that may impact OS/QoL:**

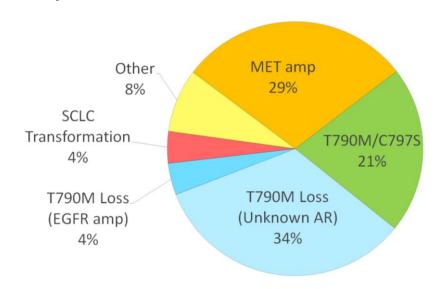
- 1. CNS efficacy
- 2. Impact on subsequent therapies
- 3. Mechanism of resistance
- 4. Patients willing




# In clinical trials 2/3 receive post-TKI therapy and 1/3 osimertinib



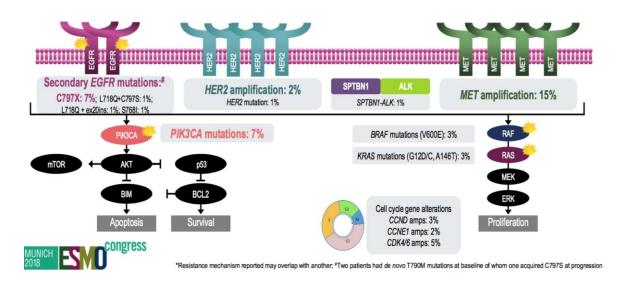
|                        | IPASS¹<br>n=132 | IFUM²<br>N=106 | NEJ002 <sup>3</sup><br>N=114 | WJTOG⁴ 3405<br>N=86 | EURTAC <sup>5</sup><br>N=86 | OPTIMAL <sup>6</sup><br>N=82 | ENSURE <sup>6</sup><br>N=110 | CTONG<br>N=128 |           | LL3 <sup>9</sup><br>N=230 | LL6 <sup>9</sup><br>N=242 | LL<br>N=160 | .7 <sup>9</sup><br>N=159 |
|------------------------|-----------------|----------------|------------------------------|---------------------|-----------------------------|------------------------------|------------------------------|----------------|-----------|---------------------------|---------------------------|-------------|--------------------------|
| ТКІ                    | Gefitinib       | Gefitinib      | Gefitinib                    | Gefitinib           | Erlotinib                   | Erlotinib                    | Erlotinib                    | Gefitinib      | Erlotinib | Afatinib                  | Afatinib                  | Afatinib    | Gefitinib                |
| OS, months             | 21.6            | 19.2           | 27.7                         | 34.8                | 19.3                        | 22.8                         | 26.3                         | 20.1           | 22.9      | 28.2                      | 23.1                      | 27.9        | 24.5                     |
| Post-TKI<br>treatment* | 76%             | 49%            | 72%                          | 88%                 | 68%                         | 63%                          | 66%                          | 55%            | 51%       | 71%                       | 57%                       | 73%         | 77%                      |


# Subsequent therapies received among patients tested for EGFR T790M



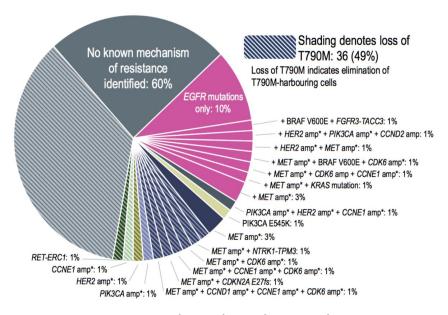
### Resistance mechanisms post ≥second-line osimertinib

| Pt  | EGFR<br>mutation            | # Prior<br>Therapies |   | TISSUE (NGS, FISH)                                  | PLASMA ctDNA (NGS)                |
|-----|-----------------------------|----------------------|---|-----------------------------------------------------|-----------------------------------|
| 1   | L858R                       | 1                    |   | MET amp, T790 wt                                    | MET amp, T790 wt                  |
| 2   | Del19                       | 1                    |   | -                                                   | T790 wt                           |
| 3   | Del19                       | 2                    | Υ | -                                                   | T790 wt                           |
| 4   | L858R<br>(de novo<br>T790M) | 2                    | Υ | <i>MET</i> amp, <i>EGFR</i> amp<br>T790M (germline) | -                                 |
| 5   | L858R                       | 3                    | Υ | T790wt, EGFR amp                                    | T790 wt                           |
| 6   | L858R                       | 4                    | Υ | T790 wt                                             | T790 wt                           |
| 7   | Del19                       | 3                    | Υ | -                                                   | T790 wt                           |
| 8*  | Del19                       | 3                    |   | T790M/C797S                                         | T790M/C797S                       |
| 9   | L858R                       | 4                    | Υ | T790 wt                                             | -                                 |
| 10  | Del19                       | 3                    | Υ | -                                                   | PIK3CA E545K, PIK3CA amp, T790 wt |
| 11  | Del19                       | 2                    | Υ | MET amp, EGFR amp, T790 wt                          | T790 wt                           |
| 12  | Del19                       | 2                    | Υ | -                                                   | T790M/C797S                       |
| 13  | Del19                       | 9                    |   | T790 wt                                             | -                                 |
| 14  | Del19                       | 2                    | Υ | T790 wt                                             | T790 wt                           |
| 15  | Del19                       | 1                    |   | T790 wt                                             | FGFR1 D60N, FGFR1 amp, T790 wt    |
| 16  | L858R                       | 2                    |   | MET amp, T790 wt                                    | MET, EGFR amp, T790 wt            |
| 17  | L858R                       | 3                    | Υ | T790 wt                                             | T790 wt                           |
| 18  | Del19<br>(de novo<br>T790M) | 3                    |   | SCLC, T790 wt                                       | T790 wt, <i>EGFR</i> amp          |
| 19  | Del19                       | 3                    | Υ | T790 wt                                             | T790M/C797S, MET amp, EGFR amp    |
| 20  | L858R                       | 2                    |   | MET amp, EGFR amp, T790 wt                          | -                                 |
| 21  | L858R                       | 3                    |   | -                                                   | T790M/C797S, EGFR amp             |
| 22* | L858R                       | 1                    |   | MET amp, T790M wt                                   | -                                 |
| 23  | Del19                       | 4                    | Υ | -                                                   | T790M/C797S                       |


- Loss of T790M (42-68%) frequently occurs with a range of competing resistance mechanisms
- Most common resistance mechanisms are EGFR C797S and MET amplification
- Other mechanisms including, but not limited to:
- **✓** Rare acquired *EGFR* mutations other than C797S
- ✓ Amplifications in EGFR, HER2, KRAS, PIK3CA



Le et al. Clin Cancer Res 2018 [ePub]
Lin, et al. Lancet Respir Med 2018
Oxnard et al. JAMA Oncol 2018 [ePub]
Piotrowska et al. J Clin Oncol 2017;35:(Suppl) abs 9020
Yang et al. Clin Cancer Res 2018;24:3097–107


# Resistance mechanisms to Osimertininb in EGFR + NSCLC from the FLAURA study [91 patients]

# Resistance mechanisms to Osimertininb in EGFR T790M + NSCLC from the AURA 3 study [73 patients]



#### Summary

- Acquired EGFR mutations: 21%
- MET amp\*: 19%
- Cell cycle gene alterations: 12%
- HER2 amp\*: 5%
- PIK3CA amp\* / mutation: 5%
- Oncogenic fusion: 4%
- BRAF V600E: 3%



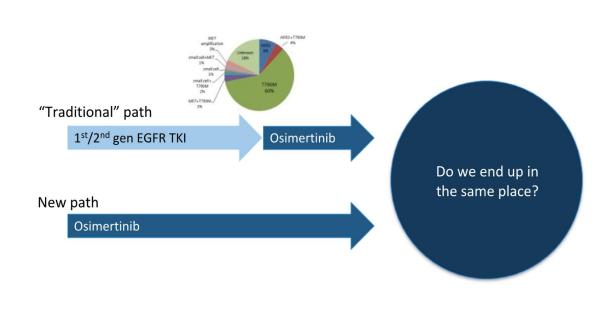
Papadimitrakopoulou V et al, ESMO 2018

#### Ramalingam S S et al, ESMO 2018

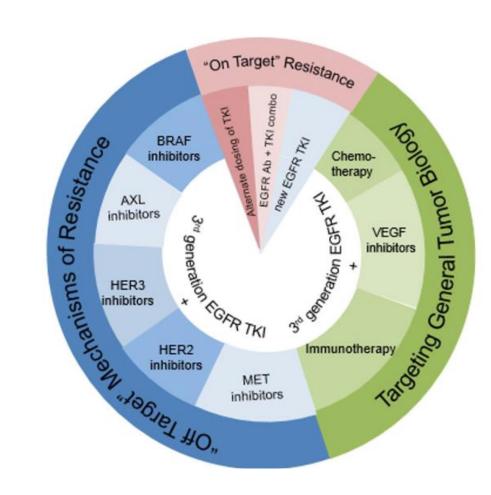
- No evidence of acquired EGFR T790M
- The most common resistance mechanisms were MET ampl (15%) and EGFR C797S mut (7%)
- Other mechanisms included HER2 amplification, PIK3CA and RAS mutations

C797X 15% [always in cis position when co-occurring with T790M]

Loss of T790M was associated with a slightly shorter median PFS


- ✓ T790M lost: 5.54 mo (95% CI 4.14, 9.69)
- √ T790M retained: 7.06 mo (95% CI 5.62, 10.97)

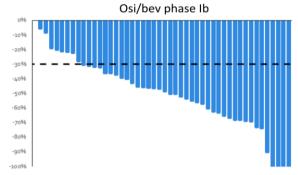
Overlapping targetable alterations in 19% of patients, which may influence subsequent treatments


# Paths to acquired resistance: convergent or divergent?

#### Osimertinib resistance

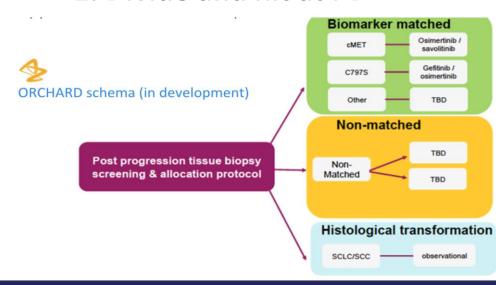
|                | FLAURA | AURA3 | Le et al. | Piotrowska <i>et al</i> . |
|----------------|--------|-------|-----------|---------------------------|
| N              | 91     | 83    | 42        | 41                        |
| % T790M loss   | (N/A)  | 49    | 50        | 63                        |
| Acquired chang | es (%) |       |           |                           |
| EGFR mut       | 9      | 17    | 26        | 24                        |
| MET amp        | 15     | 19    | 15        | 19                        |
| HER2 amp       | 2      | 5     | 2         | 5                         |
| PIK3CA mut     | 7      | 1     | 5         | 12                        |
| BRAF mut       | 3      | 3     |           |                           |
| KRAS mut       | 3      |       | 2         |                           |
| Fusions        | 1      | 3     | 5         | 10                        |
| SCLC/SqCC      |        |       | 5         | 7                         |
| Other          | 60     | 52    | 40        | 23                        |




# How to avoid or treat acquired resistance?



Arbour and Riely, Cancer 2018
Rudin CM, ESMO Munich 2018


### 1. Combination Upfront

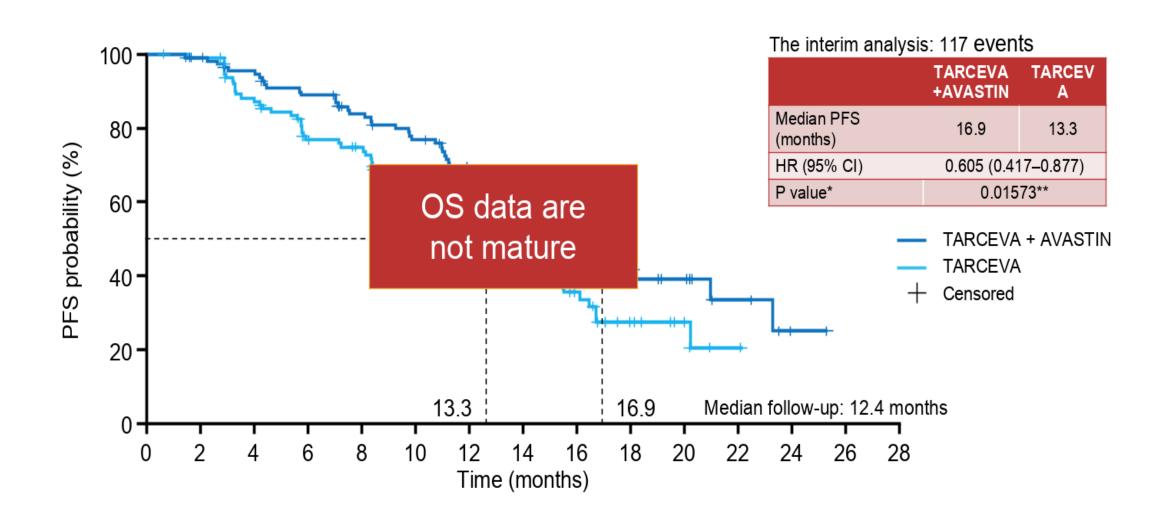
- with gefitinib
- with dacomitinib
- with bevacizumab
- with dasatinib
- with selumetinib
- with...




31 ongoing on treatment
Reasonable toxicity profile
No CNS progression (mandated interval MRIs)
Pre/post treatment biopsies, serial plasma
Primary endpoint not yet evaluable (April 2019)

#### 2. Divide and hit at PD

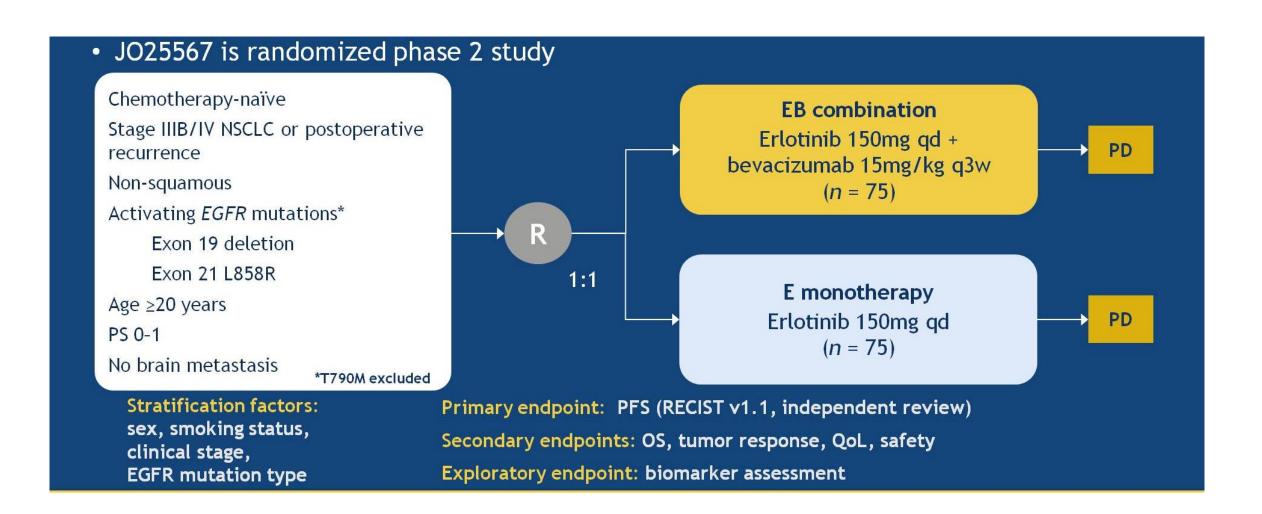



# **NEJ 026 study design**

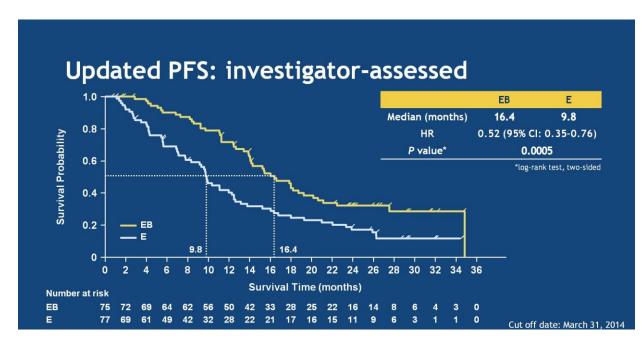
### Phase III study comparing erlotinib+bevacizumab versus erlotinib in *EGFR*<sup>mut+</sup>

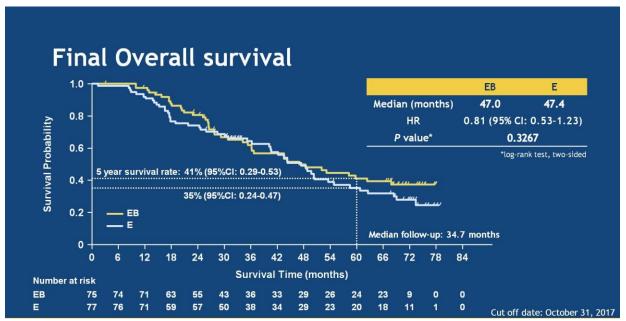


**Primary end point: PFS** 


# PFS by independent review

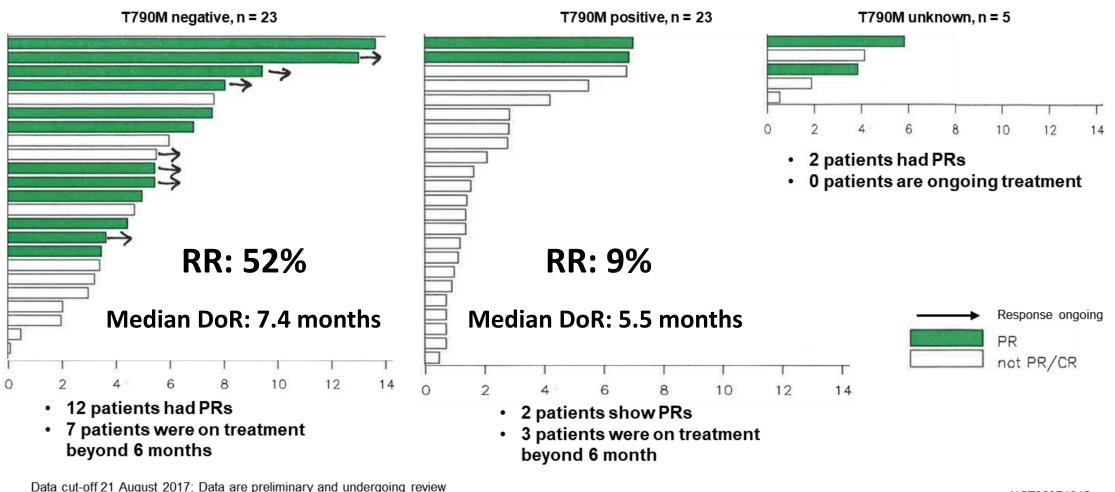



# Beva i.v infusion and toxicity as main limitation


|                 | BE<br>( n=112 ) | E<br>( n=114 ) |
|-----------------|-----------------|----------------|
| Grade ≧ 3 AEs   | 63 (56.3%)      | 43 (37.7%)     |
| Serious AEs     | 9 (8.0%)        | 5 (4.4%)       |
| Death due to AE | 0               | 0              |
|                 |                 |                |

# JO 25567 study design




### **PFS and OS**





# Inhibiting MET in patients with acquired resistance to EGFR-TKIs

Results from a phase 1b study of savolitinib+gefitinib in NSCLC resistant to EGFR-TKIs with MET amplification



NCT02374645

EGFRm, EGFR mutation

### **Sequence matters**

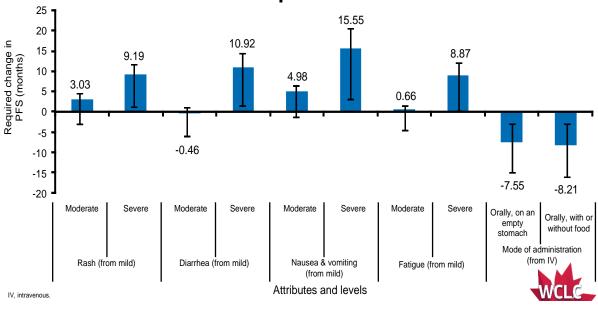


# Key factors that may impact OS/QoL:

- 1. CNS efficacy
- 2. Impact on subsequent therapies
- 3. Mechanism of resistance
- 4. Patients willing

**Osimertinib** 

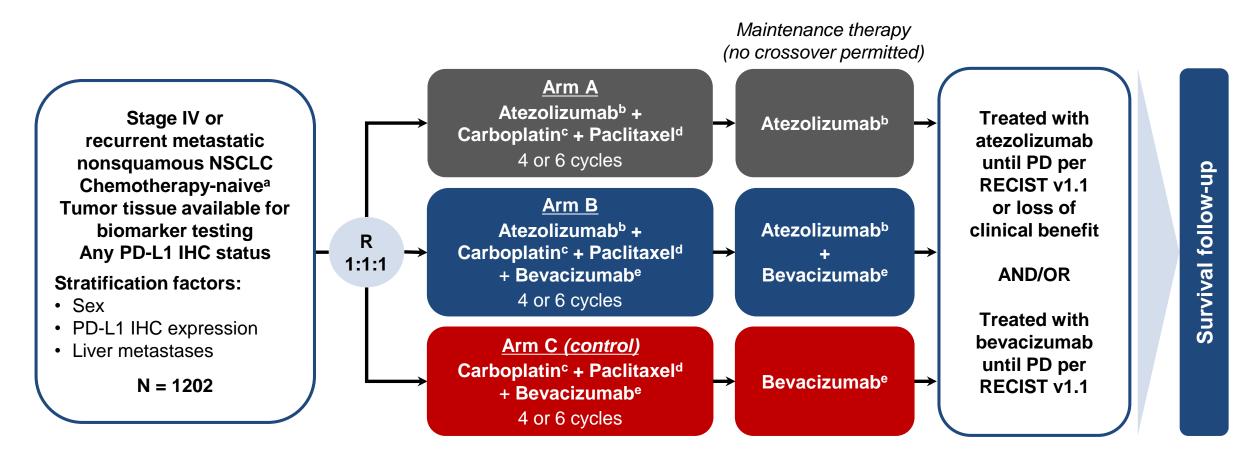
Chemo


#### OA10.01 - Patient Preferences for TKI Treatments for EGFR + Metastatic NSCLC

Patients are split in terms of preferences between efficacy and side effects, but were generally less likely to take on significant side effects for smaller improvement in PFS.

#### Patient had a clear hierarchy for least desirable side effects:

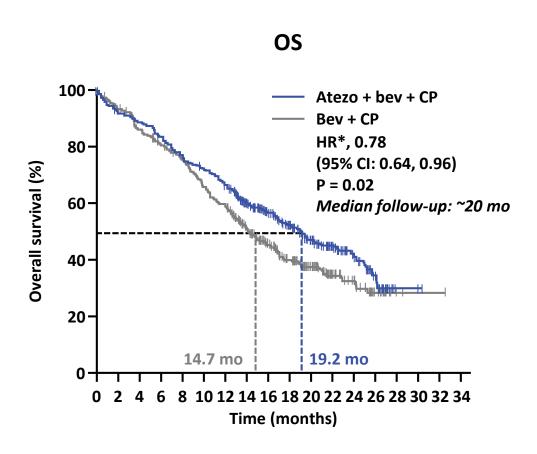
- Severe nausea/vomiting were least desirable (15.5mo)
- Severe diarrhea (11mo)
- 3. Severe rash (9.2 mo)
- 4. Severe fatigue (8.9 mo)
- 5. Moderate N/V (5mo)
- 6. Moderate Rash (3mo)

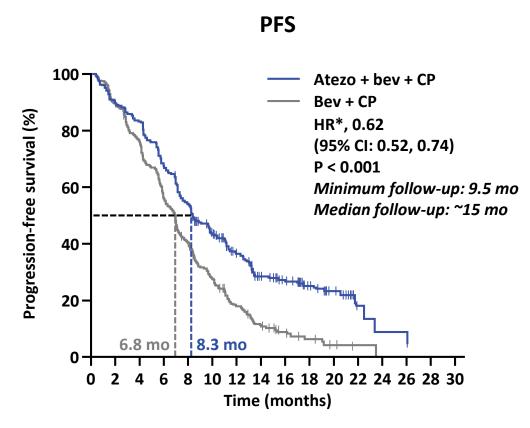

#### Results: discrete choice experiment



• Oncology is a team sport. Collaborations between patients, caregivers, clinicians, researchers, community and academic institutions, industry partners, patient advocacy groups and other stakeholders are essential to advancing oncology care and improving the lives of our patients.

John Bridges et al, ESMO Munich 2018

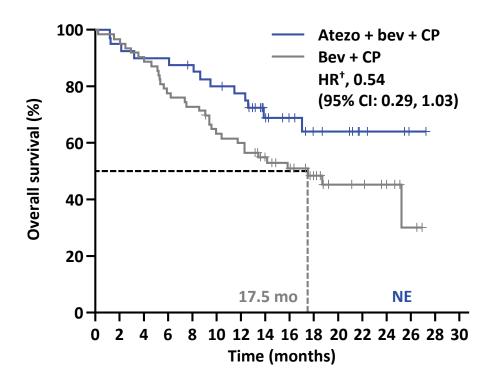

# **IMpower150 Study Design**



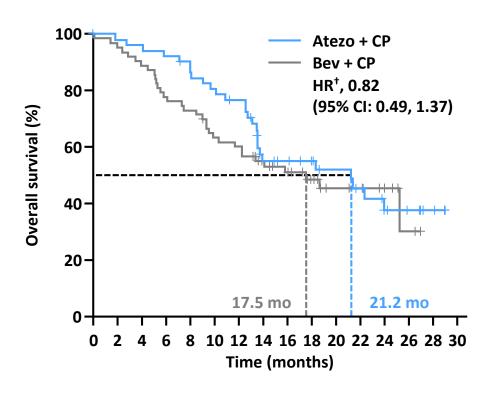

<sup>&</sup>lt;sup>a</sup> Patients with a sensitizing *EGFR* mutation or *ALK* translocation must have disease progression or intolerance of treatment with one or more approved targeted therapies.

<sup>&</sup>lt;sup>b</sup> Atezolizumab: 1200 mg IV q3w. <sup>c</sup> Carboplatin: AUC 6 IV q3w. <sup>d</sup> Paclitaxel: 200 mg/m<sup>2</sup> IV q3w. <sup>e</sup> Bevacizumab: 15 mg/kg IV q3w.

# IMpower150 met its co-primary endpoints of OS and PFS in the ITT-WT population

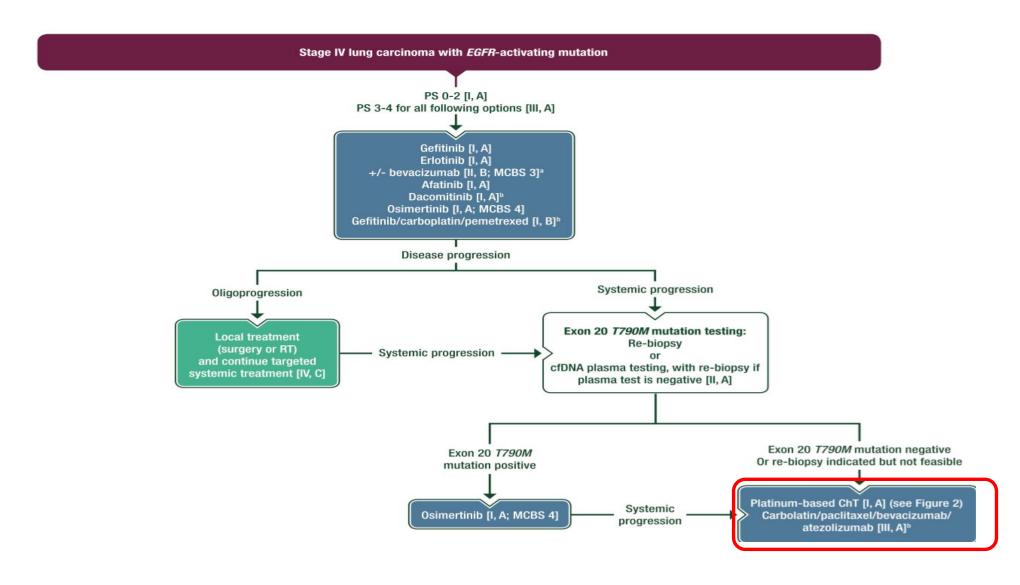






\*Stratified HR
Data cut-off: 22 January 2018 (OS); 15 September 2017 (PFS)
Socinski, et al. N Engl J Med 2018; Reck, et al. ESMO IO (Abs LBA1\_PR)

# Addition of bevacizumab to atezolizumab and chemotherapy prolongs survival of *EGFR/ALK*+ patients

Atezo + bev + CP\* vs Bev + CP




Atezo + CP vs Bev + CP



OS benefit in EGFR/ALK+ patients was observed despite lower PD-L1 expression in these patients

### **ESMO Guidelines 2018**



Plachard D et al. Annals of Oncology 2018

# **My Visionary Oncology**

### Value of oncogene-driven patient groups

- They support patients and caregivers
- They increase awareness and education
- They accelerate research by
  - Grantmaking
  - Supporting clinical trial accrual
  - Creating more models of rare cancers for researchers



| GROUP             | FOCUS                                           | STARTED  | MBRS | CNTRY | EMAIL & WEBSITE                                |
|-------------------|-------------------------------------------------|----------|------|-------|------------------------------------------------|
| ROS1ders          | ROS1+ cancer                                    | May 2015 | 323  | 22+   | ros1cancer.patient@gmail.com<br>ros1cancer.com |
| ALK<br>Positive   | ALK+ NSCLC                                      | Apr 2015 | 1210 | 41+   | info@alkpositive.org<br>www.alkpositive.org    |
| Exon 20<br>Group  | EGFR & HER2 Exon 20 insertions                  | Jun 2017 | 243  | 22    | exon20@exon20group.org<br>www.exon20group.org  |
| EGFR<br>Resisters | EGFR+ NSCLC plus cancers resistant to EGFR TKIs | Aug 2017 | 650  | 24    | egfrresisters@gmail.com<br>www.egfrcancer.org  |
| RET<br>Renegades  | RET+ NSCLC                                      | May 2018 | 43   | 2     | retrenegades@gmail.com                         |

Janet Freeman-Daily, The ROS1ders, USA, WCLC Toronto 2018