

Quale sequenza terapeutica nella malattia ALKtraslocata?

Dr. Rita Chiari

SC Oncologia Medica Azienda Ospedaliera-Universitaria di Perugia

Outline

- ALK-rearranged:
 - •The picture
 - •How alectinib changed 1st line
 - •Brigatinib: a new standard first line option?
 - •The upcoming scenario in first line
 - •Mechanisms underlying acquired resistanceto ALK-TKIs
 - •Precision oncology in the era of NGS

Outline

• ALK-rearranged:

•The picture

•How alectinib changed 1st line

- •Brigatinib: a new standard first line option?
- •The upcoming scenario in first line
- •Mechanisms underlying acquired resistance to ALK-TKIs

•Precision oncology in the era of NGS

Crizotinib in First Line: OS final Analysis PROFILE 1014

Solomon et al. JCO 2018

Impact of Subsequent Therapy after Crizotinib 1st Line on OS: ALK TKI versus Treatment Other Than ALK TKI - PROFILE 1014

Rapid clinical development of multiple ALK TKIs

Efficacy of next generation ALK-TKIs after CRIZ: updated evidence

ALK Inhibitors	ceritinib ASCEND-5 ¹	alectinib ALUR ²	lorlatinib Phase 1/24	brigatinib ALTA⁵
Line of Therapy	2L ALK+	2L ALK+	1L/ 2L/ 3L ALK+	2L ALK+
Confirmed ORR	49% (Invest.) 45% (IRC)	37.5 (Invest.) 36.1 (IRC)	74% / 66% (Post-crizo only / +CT) 51% / 42% / 35% (Post 1 / 2 / 3 ALKi <u>+</u> CT)	Invest. 6:54% IRC 7 53%
Systemic DOR	6.9 Mos	9.3 (6.9 – NE) Months	5.5 Mos (1 prior ALKi <u>+</u> CT) 6.9 Mos (2 or 3 prior ALKi <u>+</u> CT)	Invest.: 18.8 Mos IRC: 14.8 Mos
PFS	6.7 Mos (Invest.)	9.6 Mos (Invest)	N/A	Invest.: 15.6 Mos
	5.4 Mos (IRC)	7.1 Mos(IRC)		IRC 16.7 Mos
Confirmed CNS ORR	35%	54.2% (IRC Reviewed)	59% / 75% Post-crizo only / +CT 63% / 56% / 39% Post 1 / 2 / 3 ALKi <u>+</u> CT	IRC: 67%
Intracranial DOR	6.9 Mos	7.6 (5.8-10.3) ³ Mos	N/A	IRC: 16.6 Mos
Intracranial PFS (IRC<)	N/A	N/A	N/A	IRC: 18.4mos

Rita Chiari

1. ASCEND 5, Shaw et all. Lancet Oncol 2017;18;874-86 2: ALUR ESMO 2017 Novello S et al. abstr 1299. 3: WLCC 2017, Pooled response phase 1/II studies, Gadgeel S et al. 4. WCLC 2017 Phase 1/2 data Shaw et al 5. WLCC 2017 updated ALTA; Ahn MJ et al. 6: investigator assessed primary endpoint 7: IRC assessed secondary endpoint

Outline

- ALK-rearranged:
 - •The picture
 - •How alectinib changed 1st line
 - •Brigatinib; a new standard first line option?
 - •The upcoming scenario for first line
 - •Mechanisms underlying acquired resistance to ALK-TKIs
 - •Precision oncology in the era of NGS

ALEX: duration of follow up

Primary data cut-	Primary data cut-off 9 February 2017 ¹			Updated data cut	t-off 1 December	2017 ²
	Alectinib (n=152)	Crizotinib (n=151)			Alectinib (n=152)	Crizotinib (n=151)
Duration of follow-up, months			Dur moi	ration of follow-up, nths		
Mean (SD)*	17.08 (7.36)	15.50 (7.2)		Mean (SD)*	23.02 (11.22)	20.09 (10.97)
Median	18.6	17.6		Median	27.8	22.8
25%, 75% percentile*	12.91, 22.16	9.23, 20.60		25%, 75% percentile*	14.05, 31.05	9.23, 29.37
Min, Max	0.5, 29.0	0.3, 27.0		Min, Max	0.5, 38.7	0.3, 36.7
 164 PFS events observe alectinib n=62/152 crizotinib n=102/1 	ed: 2 (41%) 51 (68%)			 188 PFS events o alectinib n crizotinib r 	bserved: =72/152 (47%) n=116/151 (77%)	

ALEX Trial: Outcomes Update

Median follow-up **27.8 months PFS HR 0.43** (95% CI 0.32-0.58) **mPFS 34.8 for AL vs 10.9 for CZ**

OS HR 0.76 (95% CI 0.50-1.15) Median OS still immature

Rita Chiari

Camidge DR, Abstract 9043, ASCO 2018

ALEX: PFS by baseline CNS metastases status

Peters et al; N Engl J Med. 2017 Camidge, et al. ASCO 2018

ALEX: risk of CNS progression

Peters et al; N Engl J Med. 2017

Outline

- ALK-rearranged:
 - •The picture
 - •How alectinib changed 1st line
 - •Brigatinib: a new standard first line option?
 - •The upcoming scenario in first line
 - •Mechanisms underlying acquired resistance to ALK-TKIs
 - •Precision oncology in the era of NGS

ALTA-1L: Phase 3, Open-label, Randomized, Multicenter

Disease assessment every 8 weeks, including brain MRI for all patients

• <u>Primary endpoint</u>: BIRC–assessed PFS per RECIST v1.1

- <u>Key secondary endpoints</u>: Confirmed ORR, confirmed iORR, iPFS, OS, safety, and tolerability
- Statistical considerations: ~270 patients (198 events); 135 in each arm to detect a 6-month improvement in PFS (HR=0.625), assuming:
 - 10-month PFS in crizotinib arm
 - 2 planned interim analyses at 99 (50%) and 149 (75%) total expected events

Trial fully accrued in August 2017 (N=275)

First interim analysis:

- A total of 99 PFS events are included
- According to the prespecified O'Brien-Fleming Lan-DeMets alpha spending function, a 2-sided P value of 0.0031 was used to define the threshold for significance

Camidge RD et al NEJM September 25th 2018

WCLC 20

ALTA-1L Primary Endpoint: BIRC-Assessed PFS

• Brigatinib met the prespecified threshold for statistical superiority vs crizotinib

- Investigator-assessed median PFS was NR (95% CI, NR–NR) in the brigatinib arm and 9.2 months (95% CI, 7.4–12.9 months) in the crizotinib arm (HR, 0.45 [95% CI, 0.30–0.68]; log-rank P=0.0001)
- 1-year OS probability: brigatinib, 85% (95% CI, 76%–91%); crizotinib, 86% (77%–91%)

Intracranial PFS in Patients With Any Brain Metastases at Baseline

Camidge RD et al NEJM September 25th 2018

WCLC 2018

ALTA-1L Toxicity

	Brigatinib	(n=136), %	Crizotinib (n=137), %			Brigatinib	(n=136), %	Crizotinib (n=137), %	
	Any Grade	Grade ≥3	Any Grade	Grade ≥3		Any Grade	Grade ≥3	Any Grade	Grade ≥3
Diarrhea	49	1	55	2	Dyspepsia	6	0	13	0
Increased blood CPK	39	16	15	1	Epistaxis	6	0	0	0
Nausea	26	1	56	3	Bradycardia	5	1	12	0
Cough	25	0	16	0	Peripheral edema	4	1	39	1
Increased AST	23	1	25	6	Dysgeusia	4	0	19	0
Hypertension	23	10	7	3	Upper abdominal pain	4	1	13	1
Increased ALT	19	1	32	9	Pain in extremity	4	0	12	1
Increased lipase	19	13	12	5	Increased blood creatinine	2	0	14	1
Vomiting	18	1	39	2	Neutropenia	1	0	9	4
Constipation	15	0	42	1	Pleural effusion	1	1	7	1
Increased amylase	14	5	7	1	Photopsia	1	0	20	1
Pruritus	13	1	4	1	GERD	1	0	9	0
Rash	10	0	2	0	Hypoalbuminemia	1	0	6	1
Decreased appetite	7	1	20	3	Visual impairment	0	0	16	0
Dermatitis acneiform	7	0	1	0	Deep vein thrombosis	0	0	6	0

• Interstitial lung disease (ILD)/pneumonitis at any time: brigatinib 4% (5/136); crizotinib 2% (3/137)

- Early-onset ILD/pneumonitis (within 14 days of treatment initiation): brigatinib, 3% (onset: Days 3–8); crizotinib, none reported

• Dose reduction due to AEs (brigatinib/crizotinib): 29%/21%; discontinuation due to AEs: 12%/9%

- For brigatinib, reductions for increased CPK (10.3%), lipase (5.1%); amylase (2.9%) and AST, hypertension, pneumonitis, pruritic rash (1.5% each)
- No clinical cases of pancreatitis; no difference in incidence of any grade myalgia between arms (brigatinib/crizotinib: 6%/4% and 4%/6%, respectively); no grade ≥3 myalgia reported

Camidge RD et al NEJM September 25th 2018

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

> WCLC2018.IASLC.ORG

#WCLC2018

	ALTA-1L Camidge WCLC 2018		ALEX Peters NEJM 2017		ALEX : updated analysis Camidge ASCO 2018	
	Brigatinib	Crizotinib	Alectinib	Crizotinib	Alectinib	Crizotinib
Patients (N)	137	138	152	151	152	151
Median FU mths	11	9.25	18.6	17.6	27.8	22.8
ORR (%)	76	73	82.9	75.5		
Median PFS mths (95% CI)	NR** (NR, NR)	9.8 (9.0, 12.9)	25.7** (19.9, NR)	10.4 (7.7, 14.6)	34.8* (17.7-NR)	10.9*
HR (95%CI) Log rank p value	0.49 (0.33, 0.74) 0.0007		0.5 (0.36, 0.7) <0.001		0.43 (0.32, 0.58)	
		แพ่ยุรแหลเบ	пазосозей тисер		1111166 00060060	

PL02.03: Discussant F Blackhall Brigatinib vs crizotinib (ALTA-1L) – Camidge et al

IASLC----

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

Intracranial Efficacy	ALTA-1L		Al	.EX	
	Brigatinib	Crizotinib	Alectinib	Crizotinib	
Measurable Brain Metastases (N)	18	21	21	22	
ORR % (95% CI)	78 (52,94)	29 (11,52)	81 (58,95)	50 (28,72)	
Any brain metastases (N)	43	47	64	58	
Median Intracranial PFS (95% CI)	NR (11,NR)	5.6 (4.1-9.2)	Not reported		
HR (95%CI) for PFS with any BM	0.27 (0.13-0.54)		0.40 (0.	25-0.64)	
Cumulative incidence of CNS progression at 1 year % (95% CI)	Not reported		9.4 (5.4-14.7)	41.4 (33.2-49.4)	
				WCLC	
				2018	

PL02.03: Discussant F Blackhall Brigatinib vs crizotinib (ALTA-1L) – Camidge et al al

Outline

• ALK-rearranged:

- •The picture
- •How alectinib changed 1st line
- •Brigatinib; a new standard first line option?

•The upcoming scenario in first line

Mechanisms underlying acquired resistance to ALK-TKIs
Precision oncology in the era of NGS

ALK inhibitors currently approved

ALK	ТКі	Approved	First-line setting	mPFS (mo)	After crizotinib setting	mPFS (mo)
1° Generation	*Crizotinib 250mg bd	First-line (FDA/EMA/PMDA)	PROFILE 1014	10.9		
2° Generation	*Alectinib 600mg	First-line and after crizotinib	JALEX	25.9		9.6
	bd	(FDA/EMA/PMDA)	ALEX	34.8	ALOK	3.0
	*Ceritinib 750mg/die	First-line and after crizotinib (FDA/EMA/PMDA)	ASCEND 4	16.6	ASCEND 5	5.4
	Brigantinib 90mg x 7 days → 180 mg/die	After crizotinib (FDA)	ALTA 1L (ongoing)	NA	ALTA	15.6
3° Generation	Lorlatinib 150mg/die	Pending approval after crizotinib (FDA)	NCT03052628 (ongoing)	NA	NCT01970865	13.5

* Approved drugs in Italy

Solomon BJ. NEJM, 2014 - Peters S. NEJM, 2017 - Novello S. Annals of Oncol, 2018 - Soria JC. Lancet, 2017 - Shaw AT. Lancet, 2017 - Kim DW. J Clin Oncol, 2017 - Solomon B. JTO, 2017

How to incorporate new ALK Inhibitors into clinical practice ?

Molecular guided sequential therapy:

- Sequential therapy will be driven by longitudinal profiling of cfDNA and/or tumor tissue
- Influence of various scenarios on OS cannot be quantified to date
- There is no reason not to start with the best available drugs

How to incorporate new ALK Inhibitors into clinical practice ?

To answer questions we need clinical trials

Slide with kind permission of Professor Alice Shaw

Outline

• ALK-rearranged:

- •The picture
- •How alectinib cha
- •Brigatinib; a new
- •The upcoming sce

Quale sequenza terapeutica nella malattia ALKtraslocata?

•Mechanisms underlying acquired resistance to ALK-TKIs

•Precision oncology in the era of NGS

Acquired Resistance to Crizotinib

- Alk target alteration (mutation or amplification)
- Alternative pathway activation
- Histologic trasformation

Rita Chiari Camidge et al., Nature Rev Clin Oncol, 2014

Katayama, et al, Sci Trasl Med 2012

Rita Chiari

Gainor JF et al, Cancer Discovery 2016 - McCoach et al. Chin Cancer Res 2010

Preclinical activity of next generation ALK-TKIs in resistance mutants

					₅₀ ≤50 nM [IC ₅₀ >50–<200 nM	lC ₅₀ ≥200 nM
	C	ellular ALK F	Phosphorylati	on Mean IC ₅₀ ((n M)	_	
Mutation status	Crizotinib	Ceritinib	Alectinib	Brigatinib	Lorlatinib	_	
EML4-ALK	38.6	4.9	11.4	10.7	2.3		
C1156Y	61.9	5.3	11.6	4.5	4.6	P = .023	Variant 1 (n = 33)
I1171N	130.1	8.2	397.7	26.1	49.0	57%	Variant 3 (n = 44)
l1171S	94.1	3.8	177.0	17.8	30.4		<i>P</i> < .001
I1171T	51.4	1.7	33.6	6.1	11.5	30%	32%
F1174C	115.0	38.0 ^a	27.0	18.0	8.0		
L1196M	339.0	9.3	117.6	26.5	34.0		
L1198F	0.4	196.2	42.3	13.9	14.8	All ALK Resistance Mutations	0% ALK G1202R
G1202R	381.6	124.4	706.6	129.5	49.9	Lin J et al. J	CO 2018
G1202del	58.4	⁵ G120)2R resistan	ce mutation	is most comn	on in variant 3 EMI	4-ALK and
D1203N	116.3	3 sensi	tive to lorlat	inib > brigat	inib > other 1 ^s	^t and 2 nd generation	ALKis
E1210K	42.8	5.8	31.6	24.0	1.7		
G1269A	117.0	0.4	25.0	ND	10.0	IC ₅₀ , half-maximal	
						 inhibitory concentration 	

Gainor JF, et al. Cancer Discov. 2016

Secondary Resistance: evidence

- 1. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Katayama R et al. Sci Transl Med 2012
- 2. Molecular Mechanisms of Resistance to 1st- and 2nd-Generation ALK Inhibitors in ALK-Rearranged Lung Cancer. Gainor JF et al. Cancer Discov. 2016 Oct;6(10):1118-1133
- 3. Impact of EML4-ALK Variant on Resistance Mechanisms and Clinical Outcomes in ALK-Positive Lung Cancer. Lin JJ et al. J Clin Oncol. 2018 Apr 20;36(12):1199-1206
- 4. Clinical Utility of Cell-Free DNA for the Detection of *ALK* Fusions and Genomic Mechanisms of ALK Materials and methods:

We used a combination of next generation sequencing (NGS), multiplex mutation assay, direct DNA sequence and FISH

of Circulating Tumor DNA. Dagogo-Jack I et al. JCO Precis Oncol. 2018;2018

7. Accumulation of Concomitant Mutations Involved in Drug Resistance in the Sequential ALK TKI Treatments of ALK-Positive NSCLC. Shun Lu, et al. (Oral at WCLC 2018)

Phase 1/2 Study of Lorlatinib: Design and Patient Populations

Phase 1	ALK or ROS1-positive	Lor QD	latinib ^a or BID	
N = 54 Treatment-naïve or any prior TKI ± chemotherapy			Dose escalation CRM design: 2	n: DL1 = 10 mg 5mg – 400mg
	EXP-1 ALK: treatment-naïve	EXP-3B ALK: 1 non-cr ± chemotherapy	izotinib TKI	
Phase 2	EXP-2 ALK: prior crizotinib only	EXP-4 ALK: 2 prior ALK TKIs ^b ± chemotherapy		Lorlatinib ^a
N – 275	EXP-3A ALK: prior crizotinib + 1–2 regimens of chemotherapy	EXP-5 ALK: 3 prior ALK TKIs ^b ± chemotherapy		(RP2D)
EXP-6 ROS1: treatment-naïve or any prior treatment				

Asymptomatic brain mets were allowed in all cohorts. ^aTreatment until PD or unacceptable toxicity. ^bLines of therapy (if the same TKI is given twice, this is counted as 2 prior lines of treatment).

BID, twice daily; PD, progressive disease; QD, once daily.

AACR Annual Meeting 2018

Best Response in Patients Harboring the ALK G1202R or G1202del Mutation^a (EXP2–5)

^aDetected in either cfDNA or tumor tissue (archival or de novo) analysis sets

Presented by: Alice T Shaw

Phase 2 Study Objectives

Primary Objective

Overall and intracranial antitumor activity measured as confirmed overall and intracranial response by independent central review

Secondary Objectives

- Secondary measures of clinical efficacy
- Safety and tolerability
- Patient-reported outcomes
- Selected molecular profiling

Patients Included in Biomarker Analyses

^aOnly patients with mutation status of "Mutation(s)" or "No Mutation" in both cfDNA and tumor DNA are counted.

ALK Kinase Domain Mutation Detected in Previously Treated ALK+ Patients (EXP2–5)

cfDNA analysis:

- 45/190 **(23,6%)** pts with 1 or more ALK kinase domain mutations

Tumor tissue analysis (archival or de novo):

- 40/191 **(20,9%)** ts with 1 or more ALK kinase domain mutations

Presented by: Alice T Shaw

Concordance Assessment of ALK Mutation Status by cfDNA and Tumor Tissue (Archival or De Novo)

	≥1 prior ALK TKI EXP2–5
Patients with blood and tumor tissue data, N	154
Same mutations in blood and tumor, n (%)	112 (72.7)
Different mutations in blood and tumor, n (%)	42 (27.3)
Patients with blood and tumor tissue (de novo only) data, N	69
Same mutations in blood and tumor, n (%)	41 (59.4)
Different mutations in blood and tumor, n (%)	28 (40.6)

Patients who have blood CNA data only or tumor DNA data (archival or de novo) only are counted as not available (n=44). Patients who have blood CNA data only or tumor DNA data (de novo) only are counted as not available (n=126).

Best Overall Response by Presence/Absence of ALK Mutation

	EXP2–3A: Post-Crizotinib (N=59)ª				
	No Mutation ^b (n=43)	≥1 Mutation ^ь (n=15)			
BOR, n (%)					
CR	1 (2.3)	0			
PR	30 (69.8)	11 (73.3)			
SD	8 (18.6)	0			
PD	4 (9.3)	2 (13.3)			
IND	0	2 (13.3)			
ORR, n (%) 95% Cl	31 (72.1) 56.3, 84.7	11 (73.3) 44.9, 92.2			

^a1 patient sample was non-analyzable

^bDetected in either cfDNA or tumor tissue (archival or de novo) analysis sets

	EXP3B,4–5: Prior 2 nd -gen TKI (N=139)ª				
	No Mutation ^b (n=87)	≥1 Mutation ^ь (n=49)			
BOR, n (%)					
CR	2 (2.3)	1 (2.0)			
PR	21 (24.1)	29 (59.2)			
SD	36 (41.4)	10 (20.4)			
PD	21 (24.1)	5 (10.2)			
IND	7 (8.0)	4 (8.2)			
ORR, n (%) 95% Cl	23 (<mark>26.4</mark>) 17.6, 37.0	30 (<mark>61.2)</mark> 46.2, 74.8			

^a3 patients samples were non-analyzable

^bDetected in either cfDNA or tumor tissue (archival or de novo) analysis sets

BOR, best overall response; CR, complete response; IND, indeterminate, ORR, objective response rate, PD, progressive disease; PR, partial response, SD, stable disease.

Presented by: Alice T Shaw

Outline

- ALK-rearranged:
 - •The picture
 - •How alectinib changed 1st line
 - •Brigatinib; a new standard first line option?
 - •The upcoming scenario in first line
 - •Precision oncology in the era of NGS

Association With Surviva Lung Cancel

Carolyn J. Preslay, MD; Dalwa Kerin B. Adelson, MD; Roy S. H Vineeta Agarwala, MD, PhD; A

> **RESULTS** Among 5688 range, 41-85], 63.6% v broad-based genomics patients who received based on testing result received no targeted to patients undergoing by routine testing. Using a between broad-based death at 12 months, 41. difference -3.6% [95% propensity score-mato to 1.11]; P = .40) vs unn P < .001).

WHY ORGANIZATION MATTERS

Summary

- Crizotinib <u>has been</u> the first-line standard of care for patients with ALK positive NSCLC
- Alectinib is and Brigatinib is going to become the two new 1st line standard of care
- This has implications for current 1L trials in which crizotinib is the control arm
- Alectinib and Brigatinib are effective in preventing and treating brain metastases → After multidisciplinary discussion postpone brain radiotherapy if using these drugs in first line!
- In the absence of direct comparison of next generation ALKis a 'best' ALK inhibitor will remain unknown (MASTER PROTOCOL)
- At the time of Alectinib/Brigatinib failure, therapeutic options remain undefined

Right Patient, Right Target & Right Drug – Improving cancer care through innovative patient-driven collaborations.

Zofia Piotrowska, MD, MHS

Massachusetts General Hospital Instructor, Harvard Medical School Boston, USA

Thank you for your attention! rita.chiari@unipg.it

