Carico mutazionale tumorale (TMB): considerazioni cliniche

Giulio Metro

S.C. Oncologia Medica – Ospedale Santa Maria della Misericordia, Azienda Ospedaliera di Perugia

"NSCLC avanzato: quali novità nel 2018?" - Il CONGRESSO NAZIONALE

Negrar (VR), 30.10.18

Outline

- Biomarker selection for immunotherapy in NSCLC: PD-L1
- The emerging role of tumor mutation burden (TMB) as opposed to PD-L1
- TMB in NSCLC
- Is "super-selection" possible?
- Unsolved issues with TMB

Outline

- Biomarker selection for immunotherapy in NSCLC: PD-L1
- The emerging role of tumor mutation burden (TMB) as opposed to PD-L1
- TMB in NSCLC
- Is "super-selection" possible?
- Unsolved issues with TMB

Immune checkpoint inhibitors (ICIs) targeting PD-(L)1 axis have transformed management of NSCLC

ICIs targeting PD-(L)1 and hyperprogressive disease

Overall Survival, %

Ferrara et al., JAMA Oncol 2018

Pembrolizumab: large benefit in high-PD-L1 expressors (≥ 50%)

KEYNOTE-024¹

Pembrolizumab: Median OS 30.0 months 2-yr OS 51.5% C. Treatment-naive cohort by PD-L1 TPS ≥50% and 1%-49%^a

KEYNOTE-001²

n, number of patients who died; N, number of patients in the group/subgroup; NR, not reached. PD-L1 TPS <1% group not presented because of the small patient numbers (n = 12).

> Pembrolizumab: Median OS 35.4 months 2-yr OS 66.7% 3-yr OS 48.1% 4-yr OS 48.1%

¹Brahmer et al., WCLC 2017 ²Felip et al., ASCO 2018

Benefit in PD-L1+ is largely driven by high expressors

Overall Survival: TPS ≥1-49% (Exploratory Analysis^a)

Overall Survival: TPS ≥50%

PD-L1 <1% patients may respond to ICIs

PD-L1

- Dynamic marker (PD-L1 expression at a single time point may not reflect an evolving immune response in the blood or tumor microenviroment)
- Assessment on small biopsies may not exactly reflect tumor heterogeneity
- Imperfect biomarker (other biomarkers of response in PD-L1 neg patients? TMB? TILs)

Outline

- Biomarker selection for immunotherapy in NSCLC: PD-L1
- The emerging role of tumor mutation burden (TMB) as opposed to PD-L1
- TMB in NSCLC
- Is "super-selection" possible?
- Unsolved issues with TMB

Tumors with high TMB are a rational target for ICIs

The high immunogenicity of tumors with high mutation burden makes them a rational target for treatment with I-O therapies²

¹Stratton et al. Nature 2009 ²Schumacher et al. Science 2015 ³Chalmers et al. Genome Med 2017 ⁴Chabanon et al. Clin Cancer Res 2017 ⁵Kim et al. Ann Oncol 2016 ⁵Giannakis et al. Cell Rep 2016

CD8 = cluster of differentiation 8; DNA = deoxyribonucleic acid; I-O = immuno-oncology; MHC = major histocompatibility complex; TMB = tumor mutational burden.

High TMB is predictive for response to ICIs in multiple tumor types

- FoundationOne[®]: Retrospective analysis of 1638 patients who had TMB assessment using FoundationOne^{®a1}
- In 102 patients treated with single-agent anti–PD-1/PD-L1 \bullet therapy, high TMB (≥20 mut/Mb) correlated with significantly better outcomes compared with low to intermediate TMB (1–19 mut/Mb)³
 - CR/PR rate = 46% vs 14%; *P* = 0.0025
 - PFS = 10 months vs 2.2 months; P = 0.0005
 - OS = 11.1 months vs not reached; P = 0.0557
- MSKCC cohort: ~1800 patients across 10 tumor types • received commercial PD-(L)1 and/or CTLA-4 inhibitor therapy²
- TMB was assessed using the MSK-IMPACT™ • NGS gene panel²
- Data demonstrated improved survival/outcome, with • greater mutations across all tumor types except glioma (Figure)²

MSKCC cohort: Hazard ratio-optimized cutoff (mut/Mb)4

Tumor type and sample size			Cutoff
Pan tumor (n = 1804) ^b	-∎-		18
Bladder (n = 127) ^b		-1	35
Breast (n = 46) ^b			4
Colorectal (n = 63) ^c		-1	14
Esophagogastric (n = 53) ^c		4	10
Glioma (n = 117) ^c	F		5
Head and neck (n = 78) ^b	-∎		8
Melanoma (n = 323) ^b	⊦∎- 1		13
Non-small cell lung (n = 472) ^b	H 		22
Ovarian (n = 32) ^b	HHH		3
Renal cell carcinoma (n = 155) ^b	- 		2
Combo (n = 308)°	- -		18
CTLA-4 (n = 141) ^b	┝╋──┥		18
PD-1/PD-L1 (n = 1354) ^b	⊢∎⊣		18
pted from Chan et al, 2017, ASCO-SITC ²	0 0.5 1 <im for are</im 	1.5 2 2.5 3 proved survival eater mutations	

Figure adapted from Chan et al, 2017, ASCO-SITC²

¹Goodman et al., Mol Cancer Ther 2017 ²Chan et al., ASCO-SITC 2017

TMB and PD-L1 are different markers

- Analyses from CheckMate 012, 026, and 227 show no association between TMB and PD-L1 expression^{1–3}
- Data from the atezolizumab POPLAR, BIRCH, FIR (atezolizumab) studies also suggest that TMB and PD-L1 expression do not, or weakly, co-associate⁴

¹Hellmann et al. Cancer Cell 2018 ²Carbone et al. NEJM 2017 ³Hellmann et al. NEJM 2018 ⁴Kowantetz et al., WCLC 2016

TMB was assessed by whole exome sequencing in CheckMate 026 and FoundationOne CDx[™] in CheckMate 227. Mut/Mb = mutations per megabase; NSCLC = non-small cell lung cancer; PD-L1 = programmed death ligand 1; TMB = tumor mutational burden;

TMB as molecular predictor of long-term benefit from anti-PD-(L)-1 therapy

Rizvi et al., ASCO 2018

Outline

- Biomarker selection for immunotherapy in NSCLC: PD-L1
- The emerging role of tumor mutation burden (TMB) as opposed to PD-L1
- TMB in NSCLC
- Is "super-selection" possible?
- Unsolved issues with TMB

Pembrolizumab: clinical benefit by TMB

13/18 (73%) of patients with high TMB had DCB; some patients with low TMB also had a durable response^a

TMB was assessed by whole exome sequencing (Illumina HiSeq 2000). High and low nonsynonymous TMB were defined as mutation burdens above and below the median (of 200), respectively. ^aDCB was defined as partial or stable response lasting >6 months; 5 of 18 tumors with ≥178 nonsynonymous mutations had NDB, and 1 of 18 tumors with 56 nonsynonymous mutations had DCB.

Atezolizumab: clinical benefit by TMB

	2L+ NSCLC unselected (n = 92)			
	TMB-evaluable population (n = 54 vs 38) ^{b,c}	High TMB (≥16.2 mut/Mb)		
OS, HRª (95% CI)	0.65 (0.38, 1.12)	0.5 (0.15, 1.67)		
PFS, HR ^a (95% CI)	0.98 (0.63, 1.53)	0.49 (0.19, 1.3)		
ORR, atezolizumab/docetaxel	13%/15%	20%/8%		

High TMB was associated with atezolizumab clinical benefit in all-comers with 2L+ NSCLC

^aHR = efficacy-evaluable patients, atezolizumab vs docetaxel at/above cutoff. ^bNumber of patients in docetaxel vs atezolizumab treatment arms. ^cIncludes 3 patients who did not receive any study treatments.

Nivolumab ± ipilimumab: clinical benefit by TMB

^aTMB was assessed by whole exome sequencing; TMB was divided into tertiles, with low TMB defined as 0 to <100 mutations, medium TMB as ≥100 to 242 mutations, and high TMB as ≥243 mutations. ^bHigh TMB defined as ≥10 mutations per megabase as assessed by FoundationOne CDx[™]. FoundationOne CDx[™] uses next-generation sequencing to detect substitutions, insertions and deletions, and copy number alterations in 324 genes and select gene rearrangements. I-O = immuno-oncology; mo = months; PFS = progression-free survival; TMB = tumor mutational burden.

¹Carbone et al., NEJM 2016 ²Ramalingam et al., AACR 2018 ³Hellmann et all., Cancer Cell 2018

CheckMate-227: Nivo ± Ipi vs nivo + CT vs CT

FoundationOne CDxTM uses next-generation sequencing to detect substitutions, insertions and deletions, and copy number alterations in 324 genes and select gene rearrangements. 1L = first line; ECOG PS = Eastern Cooperative Oncology Group performance status; IV = intravenous; NSCLC = non-small cell lung cancer; PD-L1 = programmed death ligand 1; Q2W = every 2 weeks; Q3W = every 3 weeks; Q6W = every 6 weeks; RECIST = Response Evaluation Criteria In Solid Tumors; TMB = tumor mutational burden.

Hellmann et al., NEJM 2018

CheckMate-568: greater response to Nivo + Ipi in NSCLCs with high TMB irrespective of PD-L1 expression

^aORR for all treated patients: 41% in PD-L1 \geq 1% subgroup (n = 138) and 15% in PD-L1 <1% subgroup (n = 114). ^bCR = 0. ^cCR = 16%. ^dCR = 4%. ^eCR = 4%.

TMB was an informative classifier of response with nivolumab + ipilimumab in patients with <1% tumor PD-L1 expression and ≥1% tumor PD-L1 expression

TMB assessed by FoundationOne CDx[™] using next-generation sequencing to detect substitutions, insertions and deletions, and copy number alterations in 324 genes and select gene rearrangements. AUC = area under the curve; CR = complete response; mut/Mb = mutations per megabase; NSCLC = non-small cell lung cancer; ORR = objective response rate; PD-L1 = programmed death ligand 1; ROC = receiver operating characteristic; TMB = tumor mutational burden.

Ramalingam et al., AACR 2018

CheckMate-227: high TMB – PFS and preliminary OS

All randomized patients (N = 1739)	TMB-evaluable patients (n = 1004)	High TMB ^b Nivolumab + ipilimumab (n = 139)	High TMB Chemotherapy (n = 160)
--	--------------------------------------	--	---------------------------------------

PFS^a with NIVO + IPI vs chemotherapy in patients with high TMB^b

Preliminary OS^c with NIVO + IPI vs chemotherapy in patients with high TMB^b

^aPer blinded independent central review; median follow-up 13.6 months for NIVO + IPI and 13.2 months for chemotherapy. ^bHigh TMB defined as \geq 10 mut/Mb. TMB was assessed by Foundation One CDxTM. ^cIn the first 1.5 months, 8 deaths occurred in the NIVO + IPI arm (4 due to disease progression; 1 never treated; 2 due to AEs unrelated to study drug; 1 due to AEs related to study drug), and 2 deaths occurred in the chemo arm (1 due to disease progression; 1 due to multiple brain infarctions related to study drug; 1 due to AEs related to study drug), and 2 deaths occurred in the chemo arm (1 due to disease progression; 1 due to multiple brain infarctions carboplatin).

1L = first line; AE = adverse event; chemo = chemotherapy; CI = confidence interval; IPI = ipilimumab; mut/Mb = mutations per megabase; NIVO = nivolumab; NSCLC = non-small cell lung cancer; OS = overall survival; PFS = progression-free survival; TMB = tumor mutational burden

Hellmann et al., NEJM 2018

CheckMate-227: high TMB – PFS by PD-L1 expression

High TMB defined as ≥10 mut/Mb. ^a95% CI: NIVO + IPI (5.5, 13.5 mo), chemo (4.3, 6.6 mo). ^b95% CI: NIVO + IPI (2.7 mo, NR), chemo (4.0, 6.8 mo). FoundationOne CDx[™] uses next-generation sequencing to detect substitutions, insertions and deletions, and copy number alterations in 324 genes and select gene rearrangements. 1L = first line; chemo = chemotherapy; CI = confidence interval; HR = hazard ratio; IPI = ipilimumab; NIVO = nivolumab; NSCLC = non-small cell lung cancer; PD-L1 = programmed death ligand 1; PFS = progression-free survival; TMB = tumor mutational burden.

CheckMate-227: PFS by TMB in < 1% PD-L1 expression

NIVO + NIVO + NIVO + ipi NIVO + IPI Chemo Chemo chemo (n = 43)(n = 48)chemo (n = 54)(n = 59)(n = 38)(n = 52)100 Median PFS.^a mo 6.2 7.7 5.3 100 Median PFS,^b mo 4.7 4.7 3.1 1.17 HR (vs chemo) 0.87 0.56 0.48 HR (vs chemo) (0.27, 0.85)(95% CI) (0.57, 1.33)(0.76, 1.81)(95% CI) (0.35, 0.91)80 80 PFS (%) 60 60 1-y PFS = 45%Nivolumab + 1-v PFS = 18% chemotherapy Nivolumab + 40 40 Nivolumab + **i**pilimumab 1-v PFS = 18% ipilimumab 1-v PFS = 27%Nivolumab + 1-y PFS = 16% Chemotherapy 20 20 chemotherapy 1-y PFS = 8% Chemotherapy 0 12 15 18 21 15 21 12 18 3 6 9 3 6 9 Months Months No. at risk No. at risk NIVO + chemo NIVO + chemo 54 43 36 21 14 9 0 38 19 13 6 0 NIVO + IPI NIVO + IPI 16 52 22 12 0 20 15 38 10 39 16 6 6 3 0 16 Λ Chemo 59 Chemo 48 30

Exploratory analysis. ^a95% CI: NIVO + chemo (4.3, 9.1 mo), NIVO + IPI (2.7, NR mo), chemo (4.0, 6.8 mo). ^b95% CI: NIVO + chemo (4.2, 6.9 mo), NIVO + IPI (1.6, 5.4 mo), chemo (3.9, 6.2 mo). TMB assessed by FoundationOne CDx[™] using next-generation sequencing to detect substitutions, insertions and deletions, and copy number alterations in 324 genes and select gene rearrangements.

TMB ≥10 mut/Mb and <1% Tumor PD-L1 expression

1L = first line; chemo = chemotherapy; CI = confidence interval; IPI = ipilimumab; NIVO = nivolumab; NR = not reached; mut/Mb = mutations per megabase; NSCLC = non-small cell lung cancer; PD-L1 = programmed death ligand 1; PFS = progression-free survival; TMB = tumor mutational burden.

TMB <10 mut/Mb and <1% Tumor PD-L1 expression

Outline

- Biomarker selection for immunotherapy in NSCLC: PD-L1
- The emerging role of tumor mutation burden (TMB) as opposed to PD-L1
- TMB in NSCLC
- Is "super-selection" possible?
- Unsolved issues with TMB

CheckMate-026: Nivo 1L NSCLC

Patients with high TMB and tumor PD-L1 expression ≥50% showed a higher response rate and longer PFS than those with one of these factors (CheckMate 026), although the patient numbers are small in this high/high group

NSCLC = non-small cell lung cancer; ORR = objective response rate; PD-L1 = programmed death ligand 1; PFS = progression-free survival; TMB = tumor mutational burden. TMB assessed by whole exome sequencing and reported by tertile: 0 to <100 mutations (low), 100 to 242 mutations (med), and >243 mutations (high).

Peters et al. AACR 2017

CheckMate-012: Nivo + Ipi in 1L NSCLC

High TMB/PD-L1 + status improved objective response rate

TMB was assessed by whole exome sequencing. 1L = first line; CI = confidence interval; CR = complete response; HR = hazard ratio; NSCLC = non-small cell lung cancer; PD-L1 = programmed death ligand 1; PFS = progression-free survival; PR = partial response; TMB = tumor mutational burden.

Hellmann et al. Cancer Cell 2018

Outline

- Biomarker selection for immunotherapy in NSCLC: PD-L1
- The emerging role of tumor mutation burden (TMB) as opposed to PD-L1
- TMB in NSCLC
- Is "super-selection" possible?
- Unsolved issues with TMB

High vs low TMB: definitions

Study/reference	Technique	Definition of high TMB (method of determination)	
Hellmann <i>et al.</i> 2018 (29)	WES	≥158 mutations (median)	
Hellmann <i>et al.</i> 2018 (CheckMate 227) (26)	FoundationOne CDx	≥10 mutations/Mb (ROC)	
Rizvi <i>et al.</i> 2018 (30)	MSK-IMPACT	≥7.4 mutations/Mb (median)	
Kowanetz <i>et al.</i> 2017 (47)	FoundationOne	≥13.5 mutations/Mb (75 th percentile; first-line treatment)	
		≥17.1 mutations/Mb (75 th percentile; second-line [#] treatment)	
Chalmers et al. 2017 (31)	FoundationOne CDx	≥20 mutations/Mb (? ¹)	
Carbone et al. 2017 (CheckMate 026) (27)	WES	≥243 mutations (? ¹)	
Rizvi <i>et al.</i> 2015 (25)	WES	≥209 mutations (median)	

¹, no information was provided on how the cut-off value was determined; [#], second-line treatment or later. WES, whole exome sequencing; MSK-IMPACT, Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets; ROC, receiver operating characteristics; TMB, tumor mutation burden; CDx, companion diagnostic test.

TMB in NSCLC patients with selected mutations

	Mean	TMB-high		TMB-low	
Variant	TMB	No. of cases	%	No. of cases	%
EGFR ex19del	4.5	36	5	354	46
EGFR L858R	4.6	22	4	242	49
EGFR T790M	4.4	8	3	132	44
EGFR mutation (other)	4.5	24	5	267	52
EML4-ALK	2.8	3	1	216	69
non-EML4-ALK	2.8	2	4	46	84
ROS1 rearrangement	3.9	5	4	/1	59
MET ex14	6.2	22	8	118	41
BRAF V600E	6.8	20	10	99	48
BRAF non-V600E	9.7	104	36	49	17
KRAS mutation	10.3	934	30	622	20
BRCA1 alteration	19.2	62	42	29	20
BRCA2 alteration	13.8	77	32	49	20
POLE mutation	25.1	8	62	2	15
PD-L1 amplification	15.6	44	52	3	4

PRESENTED AT: 2018 ASCO ANNUAL MEETING

#ASCO18 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Leora Horn

Spigel et al., ASCO 2017 14

Sufficient amount of tissue must be available for molecular diagnostics

Sholl. Transl lung Cancer Res 2018

Atezolizumab PFS benefit in bTMB subgroups validated in the **OAK study**

Overall survival in bTMB subgroups in OAK

Data generation and analysis

Sequencing

Blood collection,

plasma isolation &

cfDNA extraction

cfDNA, cell-free DNA; NGS, next-generation sequencing

- Plasma samples from the Phase II POPLAR study and the Phase III OAK st tested for bTMB, using this 394 gene-based NGS assay*
- 2/3211 of 273 samples from POPLAR, and 583 of 797 samples from OAK were bion the BEP for the study

bTMB and PD-L1

Table 1 | OS and PFS HRs in the OAK BEP with valid bTMB andPD-L1 IHC results

	N	PFS HR (95% CI)	OS HR (95% CI)
bTMB≥16	156	0.64 (0.46- 0.91)	0.64 (0.44- 0.93)
TC3 or IC3	103	0.62 (0.41-0.93)	0.44 (0.27-0.71)
$bTMB \ge 16 and TC3 or IC3$	30	0.38 (0.17-0.85)	0.23 (0.09-0.58)
N represents the number of patients	in onch cub		at tumor calls or \$10%

of tumor-infiltrating immune cells expressing PD-L1.

B-F1RST Study Design

Patients with stage IIIB-IVB^a locally advanced or metastatic NSCLC (any histology; N = 153)

Atezolizumab 1200 mg IV q3w Until PD, unacceptable toxicity or loss of clinical benefit

Inclusion Criteria

- Measurable disease per RECIST v1.1
- ECOG PS of 0 or 1
- Immunotherapy naive
- PD-L1 unselected
- Provision of blood^b

Exclusion Criteria

- Sensitizing EGFR
 mutations or ALK
 rearrangements
- Active brain metastases
 requiring treatment

Interim Analysis:

- Prespecified interim analysis at 6 months after 50% of patients have been enrolled
- Prespecified bTMB biomarker cutoff of 16

Co-Primary Endpoints:

- Evaluate the clinical efficacy of atezolizumab
 - Endpoint: INV-assessed ORR per RECIST v1.1
- Evaluate relationship between bTMB by NGS and PFS benefit
 - Endpoint: INV-assessed PFS per RECIST v1.1

Secondary Objectives:

Safety and assessment of efficacy by INV-assessed DOR, OS

INV, investigator; NGS, next-generation sequencing.
^a Staging criteria based on the IASLC Lung Cancer Staging Project proposed for the eighth edition of the AJCC NSCLC staging system; ^b Tissue biopsy was optional.

#ASCO18 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Dr Vamsidhar Velcheti

B-F1RST: bTMB as predictive biomarker for atezolizumab in 1L NSCLC 3 https://bit.ly/2xwhBtr

Presented By Vamsidhar Velcheti at 2018 ASCO Annual Meeting

bF1RST: trial results

Conclusions

- TMB is more predictive than PD-L1 in selecting patients candidate to ICIs
- TMB and PD-L1 could be used simultaneously to "superselect" patients candidate to ICIs
- Hurdles to the use of TMB as a biomarker in clinical proctice: different cutoffs used, need for prospective validation, different TMB assays requiring consistency across different platforms
- Availability of tumor tissue may limit the use of TMB in clinical practice
- Evaluation of TMB in circulating tumor DNA could overcome the challenges of obtaining sufficient tumor tissue

Thanks for your attention

giulio.metro@yahoo.com