

Trattamenti antitumorali: tossicita' cutanea gastrointestinale e neurologica

Sessione 2 - Tossicità gastrointestinale

Nausea e vomito: Linee Guida AIOM/ESMO

Emilio Bria

emilio.bria@univr.it

Oncologia Medica, Dipart. di Medicina, Università di Verona, Az. Osp. Univ. Int., Verona

Negrar (VR), 7 Luglio 2015

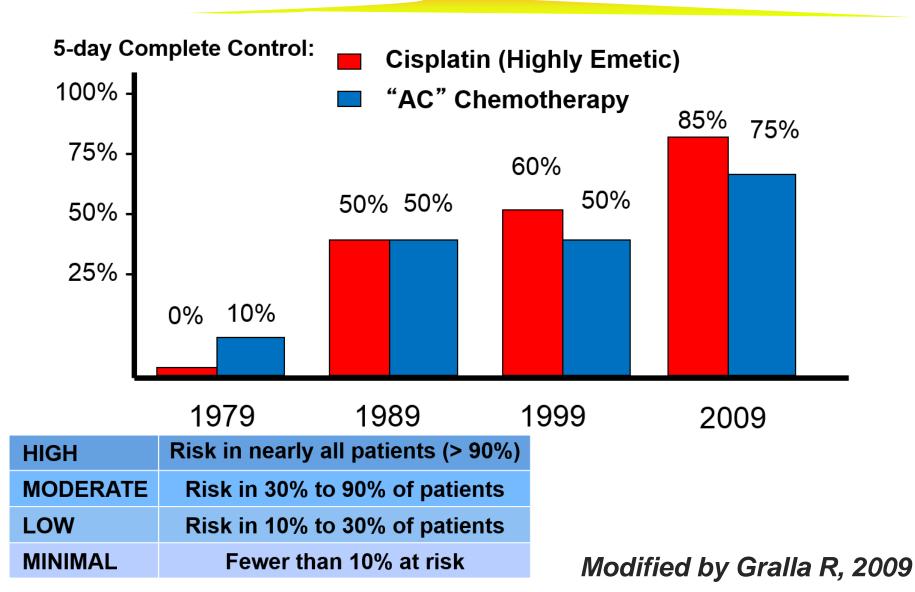
Disclosures

- Advisory Boards/Honoraria/Consultant for:
 - Celgene, Astra-Zeneca, Helsinn, Eli-Lilly, BMS, Novartis
- Research Support / Grants from:
 - A.I.R.C. (Associazione Italiana Ricerca sul Cancro)
 - I.A.S.L.C. (International Association for the Study of Lung Cancer)

THE MULTIPLE ROLES FOR 'SUPPORTIVE CARE' IN CANCER

- Reduce or eliminate associated symptoms and side-effects
- Preserve or improve quality of life
- Permit safe out-patient treatment
- Enhance the use of the most effective antineoplastic agents

Modified - Courtesy of Gralla R, 2009

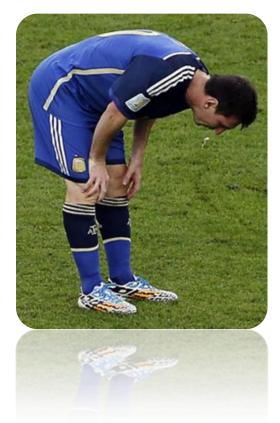

THE MULTIPLE ROLES FOR 'SUPPORTIVE CARE' IN CANCER

- Reduce or eliminate associated symptoms and side-effects
- Preserve or improve quality of life
- Permit safe out-patient treatment
- Enhance the use of the most effective antineoplastic agents

Modified - Courtesy of Gralla R, 2009

CONTROLLING CHEMOTHERAPY-INDUCED EMESIS: PROGRESS OVER THE PAST 30 YEARS: EFFICACY

Nausea and Vomiting are Among Patients' Top Concerns

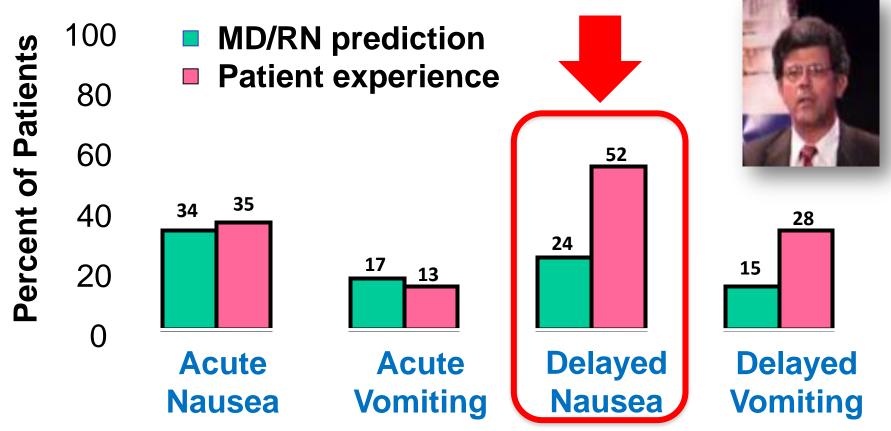

Ranking	1983 ¹	1993 ²	1995 ³	1999 ⁴	2003 ⁵	
1	Vomiting	Nausea	Nausea	Nausea	Fatigue	
2	Nausea	Fatigue	Hair Loss	Hair Loss	Nausea	
3	Hair Loss	Hair Loss	Vomiting	Fatigue	Sleep Problems	
4	Anxiety	Family Issues	Fatigue	Vomiting	Weight Loss	
5	Treatment duration	Vomiting	Injection Fear	Taste Issues	Hair Loss	

- 1. Coates Eur J Cancer 1983
- 2. Griffin, Ann Oncol 1996
- 3. de Boer-Dennert M, Br J Cancer 1997
- 4. Lindley Cancer Pract 1999
- 5. Hofman M, Cancer 2004

Modified by Di Maio M (2010) & Kris M (2012)

Issues for CINV

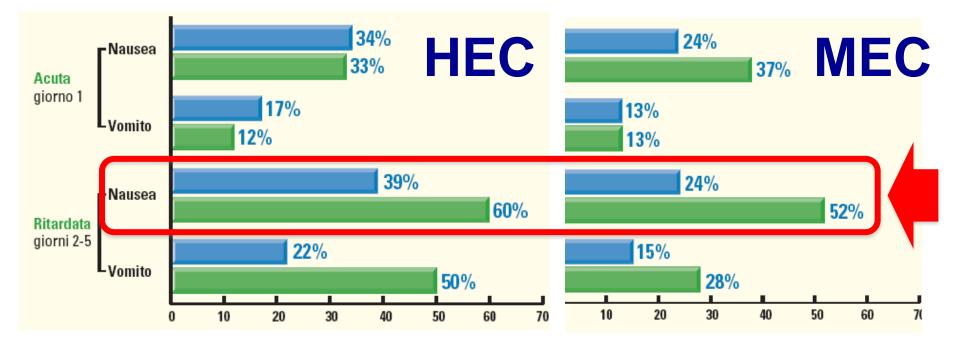
- Do we reliably measure that?
- Do we use agents optimally?
- Are guidelines useful for clinical practice?
- What is new for CINV in 2015?
- Are we missing something?


Issues for CINV

• Do we reliably measure that?

- Do we use agents optimally?
- Are guidelines useful for clinical practice?
- What is new for CINV in 2015?
- Are we missing something?

PERCEPTIONS AND REALITY Underestimation of Emesis with Chemotherapy

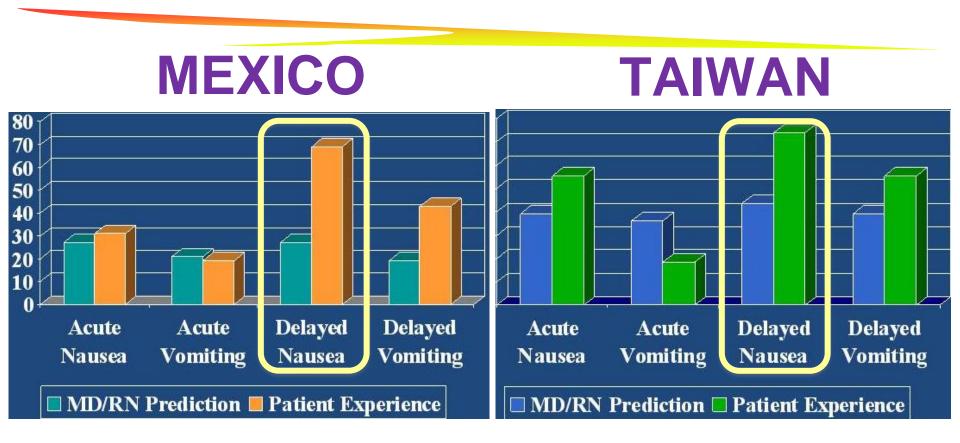

Physicians and nurses from 14 oncology practices in 6 countries

Patients [N=298]

75% women; 78% Mod emetic chemo; 50% breast cancer; 18% lung cancer

Grunberg S et al., Cancer 2004; 100: 2261-8

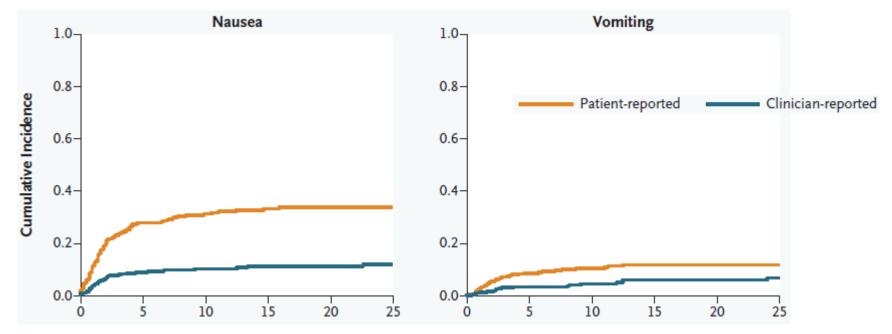
The 'ANCHOR' Study: Prediction vs Observed


MD/RD prediction (N=24)

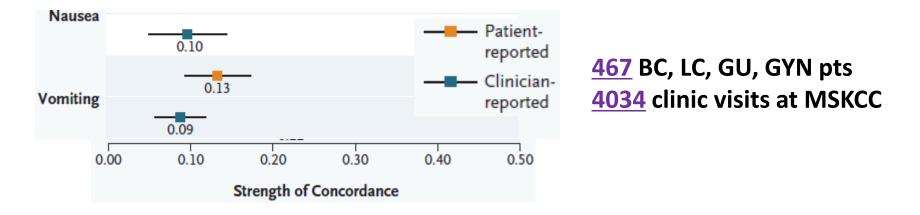
Patients' perception (N=231)

Grunberg S et al., Cancer 2004; 100: 2261-8

PERCEPTIONS AND REALITY [MEC]


Valle, Curr Med Res Opin 22:2403, 2006

Liau, Support Care Cancer 13:277, 2005


Modified by Grunberg S, ASCO 2012

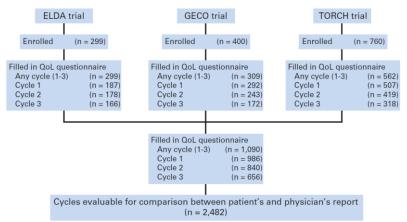
The Missing Voice of Patients in Drug-Safety Reporting

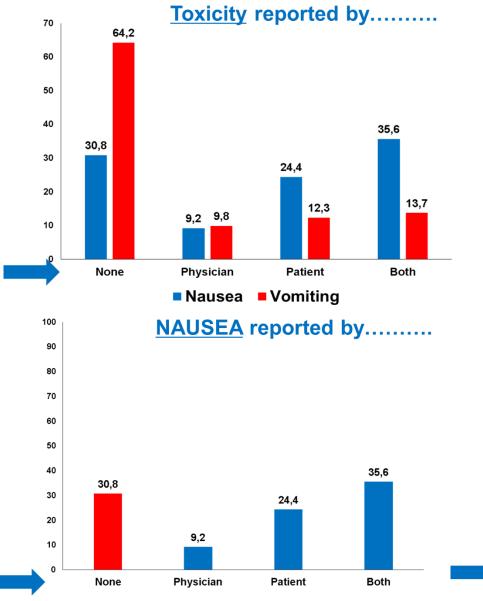
Ethan Basch, M.D.

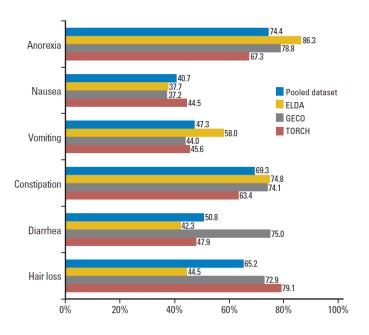
Cumulative Incidence of Adverse Symptom Events over Time as Reported by Patients versus Clinicians at Successive Office Visits.

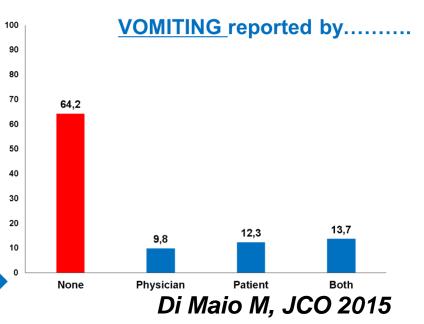
N ENGLJ MED 362;10 NEJM.ORG MARCH 11, 2010

Symptomatic Toxicities Experienced During Anticancer Treatment: Agreement Between Patient and Physician Reporting in Three Randomized Trials




Table 2. Per-Patient Analysis of Association Between Patient (any severity) and Physician Reporting (any grade) of Toxicity


No. of Evaluable		Repor Neither	ticity ted by Patient nysician	by Reported by tient Physician but		Toxicity Reported by Patient but Not Physician		Toxicity Reported by Both Patient and Physician			
Toxicity	Patients*	No.	%	No.	%	No.	%	No.	%	Cohen's κ	95% CI
Anorexia	1,090	383	35.1	28	2.6	505	46.3	174	16.0	0.15	0.12 to 0.19
Nausea	1,089	335	30.8	100	9.2	266	24.4	388	35.6	0.34	0.29 to 0.39
Vomiting	1,090	700	64.2	107	9.8	134	12.3	149	13.7	0.41	0.34 to 0.47
Constipation	1,087	501	46.1	32	2.9	384	35.3	170	15.6	0.24	0.20 to 0.29
Diarrhea	1,088	643	59.1	57	5.2	197	18.1	191	17.6	0.45	0.39 to 0.50
Hair loss	1,086	519	47.8	15	1.4	360	33.1	192	17.7	0.32	0.27 to 0.36


Conclusion

Subjective toxicities are at high risk of under-reporting by physicians, even when prospectively collected within randomized trials. This strongly supports the incorporation of patient-reported outcomes into toxicity reporting in clinical trials. **Di Maio M, JCO 2015**

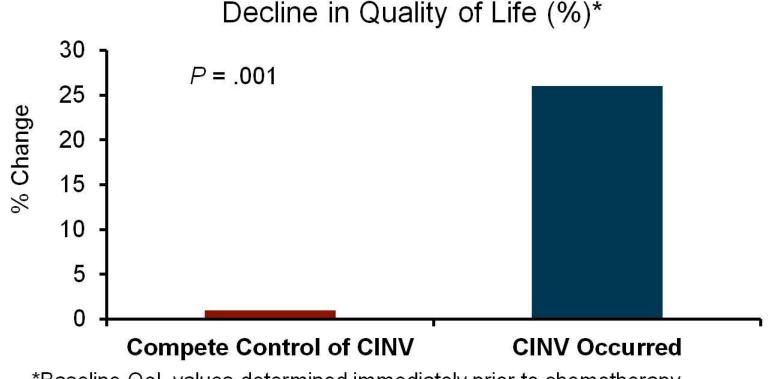
Symptomatic Toxicities Experienced During Anticancer Treatment: Agreement Between Patient and Physician Reporting in Three Randomized Trials

Reliability of adverse symptom [CTCAE] event reporting by clinicians

Symptom	ICC	95% CI		
Constipation	0.48	0.36; 0.58		
Diarrhea	0.58	0.49; 0.66		
Dyspnea	0.69	0.62; 0.75		
Fatigue	0.50	0.39; 0.59		
Nausea	0.52	0.41; 0.60		
Neuropathy	0.71	0.65; 0.76		
Vomiting	0.46	0.34; 0.56		

Two-point differences, <u>which would likely affect treatment decisions</u>, were most frequently seen among symptomatic patients for constipation (18%), <u>vomiting</u> (15%), and nausea (8%).

Atkinson et al, Qual Life Res 2012

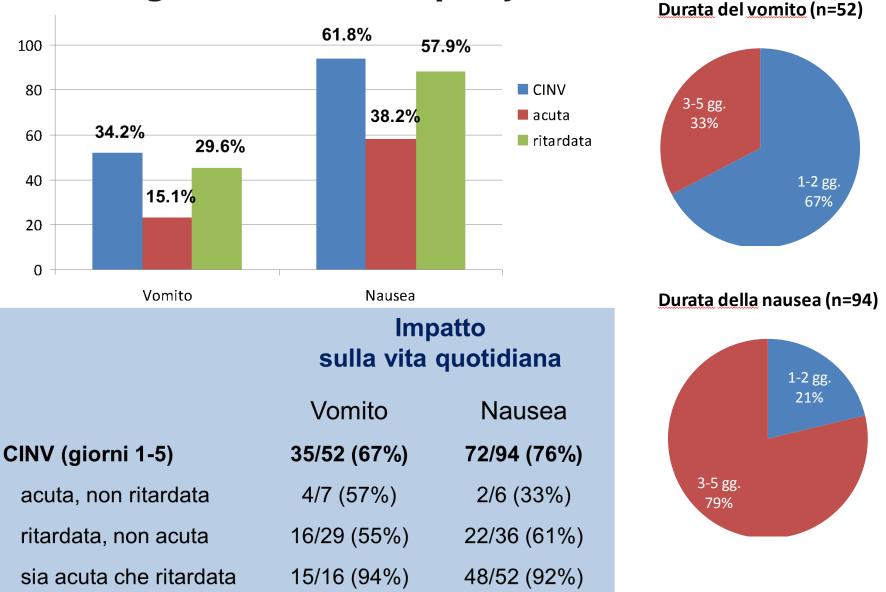

- CINV and QoL -

Why is that clinically relevant?

CINV may induce:

- Fluid and electrolyte balance
- Nutritional deficiencies
- Anorexia
- Pulmonary complications 'ab ingestis', cough
- Reduction in the ability to perform daily activities
- Delays or interruptions of chemotherapy
- Poor compliance (relevant to oral therapies)
- Deterioration in the quality of life

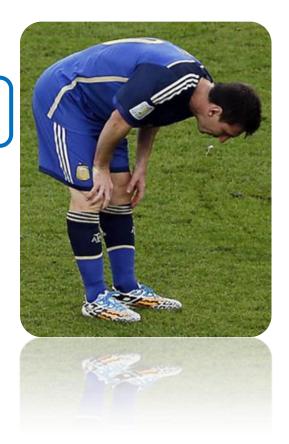
Impact of CINV on Quality of Life: Complete Control of CINV vs Failure to Control CINV



*Baseline QoL values determined immediately prior to chemotherapy, compared with 3 days after chemotherapy administration, using the patientrated, validated QoL measure, the Functional Living Index – Emesis (FLIE).

Lindley CM, et al. Qual Life Res. 1992;1:331-340.

Gralla RJ, Medscape 2013


The impact of chemotherapy-induced nausea and vomiting on health-related quality of life

Ballatori E, SCC 2007

Issues for *CINV*

- Do we reliably measure that?
- Do we use agents optimally?
- Are guidelines useful for clinical practice?
- What is new for CINV in 2015?
- Are we missing something?

MAJOR ANTIEMETIC CLASSES - Do we use Agents in these Classes Optimally? -

Corticosteroids

- Mechanism of action in CINV prevention is unknown
- Side effects are limited by shortened course
- Dexamethasone is typically used

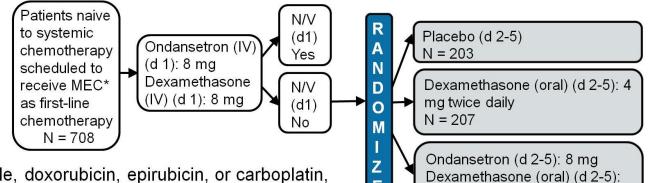
Serotonin Antagonists

- Block binding of 5HT₃ (serotonin) to the 5HT₃ receptor
- Includes:
 - First-generation 5HT₃ receptor antagonists: dolasetron, granisetron, and ondansetron
 - Second-generation 5HT₃ receptor antagonist: palonosetron

NK₁ Antagonists

- Blocks binding of substance P to the NK₁ receptor
- Includes oral aprepitant and fosaprepitant (IV form of aprepitant)

MAJOR ANTIEMETIC CLASSES - Do we use Agents in these Classes Optimally? -


Corticosteroids – Steroid Sparing

Serotonin
 Antagonists

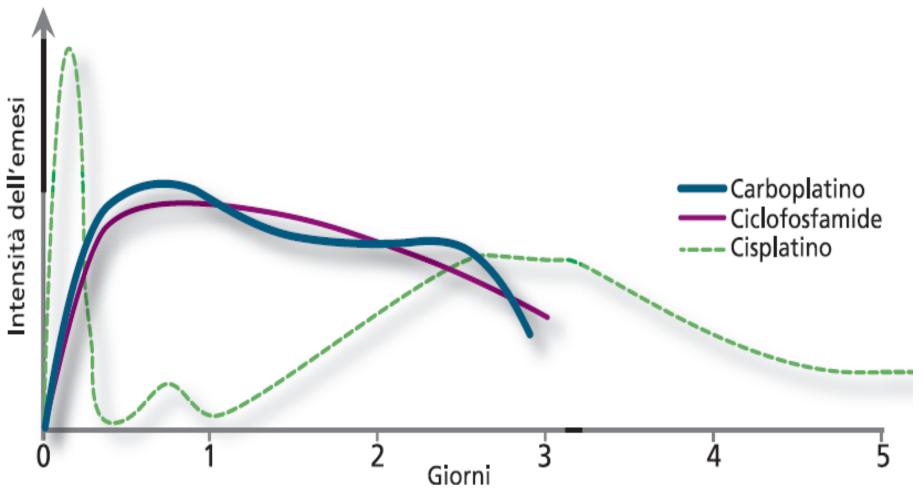
NK₁ Antagonists

The Italian Group for Antiemetic Research 2000

Ε

4 mg twice daily

N = 208

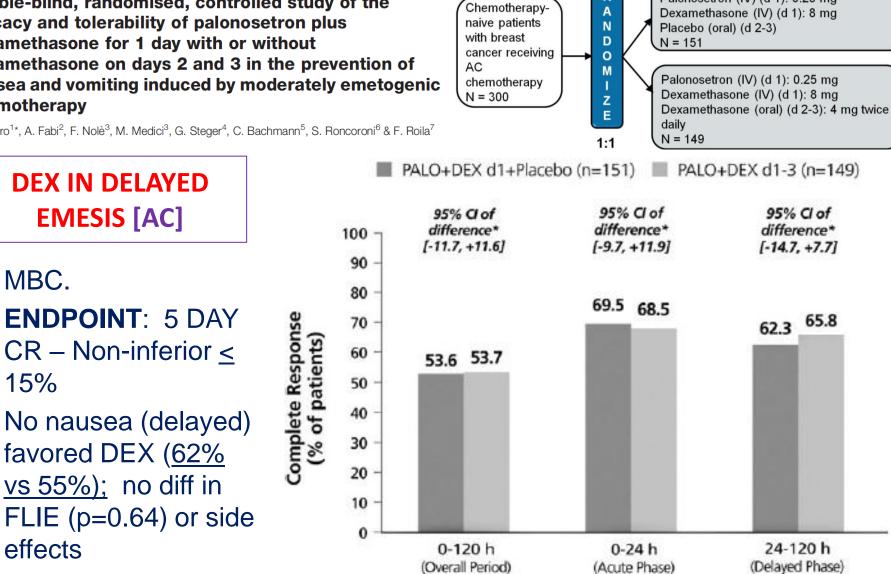

*Cyclophosphamide, doxorubicin, epirubicin, or carboplatin, either alone or in combination.

	Placebo	Dexamethsone (d 2-5)	Ondansetron + Dexamethasone (d 2-5)	<i>P</i> Value for Overall Comparison Between 3 Groups
No emesis (delayed period)	87.3%	92.3%	95.2%	.02
No moderate or severe nausea (delayed period)	81.8%	89.4% The	93.3% Italian Group for Antiemetic R	.002 esearch. <i>N Engl J Med.</i> 2000;342

Conclusion: Dexamethasone alone is an optimal approach for the prevention of CINV during the delayed period in this patient population.

Raftopoulos H, Medscape 2013

Aapro et al. Oncology 2005

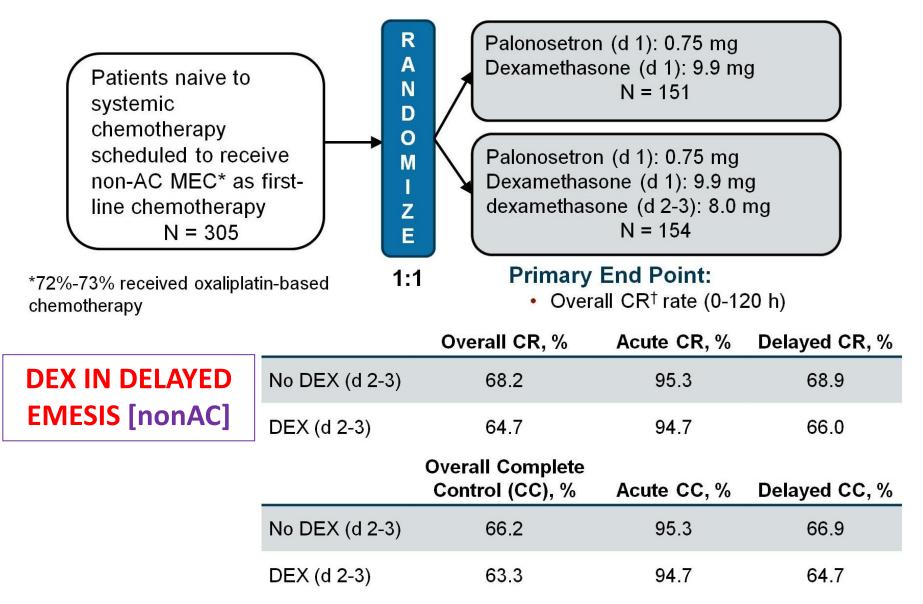

Double-blind, randomised, controlled study of the efficacy and tolerability of palonosetron plus dexamethasone for 1 day with or without dexamethasone on days 2 and 3 in the prevention of nausea and vomiting induced by moderately emetogenic chemotherapy

M. Aapro¹*, A. Fabi², F. Nolè³, M. Medici³, G. Steger⁴, C. Bachmann⁵, S. Roncoroni⁶ & F. Roila⁷

MBC.

15%

effects


Conclusion: In patients treated with a single injection of palonosetron on day 1, reducing dexamethasone is an option that is not associated with significant reduction in antiemetic control during the 5-day period or an impact on patient functioning.

Annals of Oncology 21: 1083-1088, 2010

Palonosetron (IV) (d 1): 0.25 mg

Palonosetron in combination with 1-day versus 3-day dexamethasone for prevention of nausea and vomiting following moderately emetogenic chemotherapy: a randomized, multicenter, phase III trial Palonosetron (IV) (d 1): 0.25 mg R Dexamethasone (IV) (d 1): 8 mg A Chemotherapy-naïve Ν N = 166 **DEX IN DELAYED** patients scheduled to D receive AC- or non-0 **EMESIS** [nonAC/AC] AC-based MEC Μ N = 334Palonosetron (IV) (d 1): 0.25 mg Dexamethasone (IV) (d 1): 8 mg Ζ Dexamethasone (oral) (d 2-3): 8 mg Е P=0.262 N = 166100 1:1 88,6 P=0.116 90 84,3 P=N.d.77,7 80 71,1 68,7 67,5 70 60 50 40 30 20 10 0 Acute [0-24] Overall [0-120] Delayed [24-120] Open-label, non inferiority trial (N=332) d1 DEX dd1-3 DEX **Primary endpoint: Complete Response** Support Care Cancer (2011) 19:1217-1225

Steroid Sparing in Non-AC MEC

Sasaki K, et al. ECCO 2013. Abstract 1303

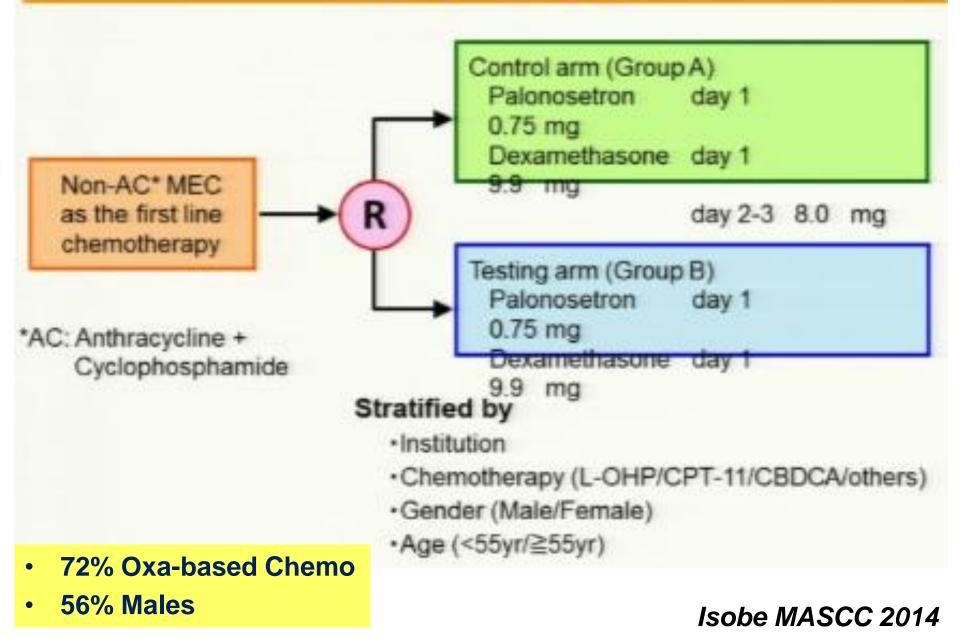
Raftopoulos H, Medscape 2013

Aprepitant Versus Dexamethasone for Preventing Chemotherapy-Induced Delayed Emesis in Patients With Breast Cancer: A Randomized Double-Blind Study

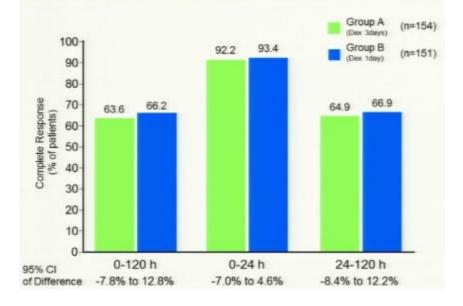
J Clin Oncol 31. © 2013

Fausto Roila, Benedetta Ruggeri, Enzo Ballatori, Albano Del Favero, and Maurizio Tonato

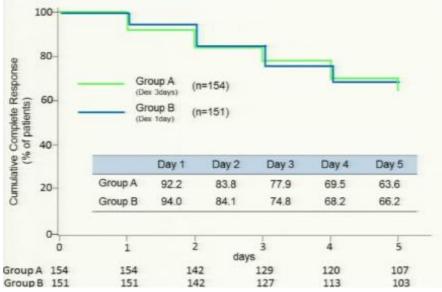
DEX IN DELAYED EMESIS [AC]

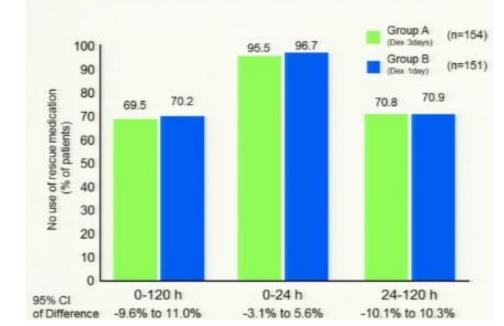

- 580 pts
- All receiving PALO 0.25, DEX 8, APR day 1
- ENDPOINT: Delayed Emesis, superiority fav. DEX (12%)
- No diff in FLIE (p=0.24); more imsonia/heartburn with DEX

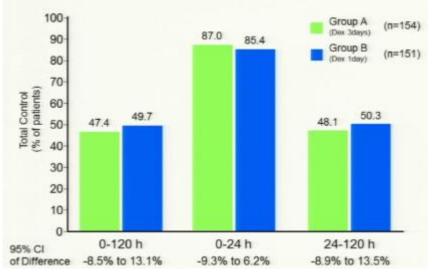
	A	Dexamethasone Arm (n = 273)		ant Arm 278)	
Result	No.	%	No.	%	Р
Complete response	217	79.5	221	79.5	1.00
Complete					
protection	164	60.1	152	54.7	.23
Total control	131	48.0	120	43.2	.27
No vomiting	250	91.6	248	89.2	.39
No nausea	134	49.1	122	43.9	.24
No significant nausea	174	63.7	158	56.8	.10
No. of emetic episodes*					.07
Mean	5	.7	9	.2	
SD	6	.5	9	.4	
Maximum severity of nausea†					.26
Mean	42	2.8	4	5.5	
SD	2	5.9	24	4.1	
Duration of nausea, hours†					.13
Mean	14	4.1	16	5.6	
SD	18	8.4	2	1.4	

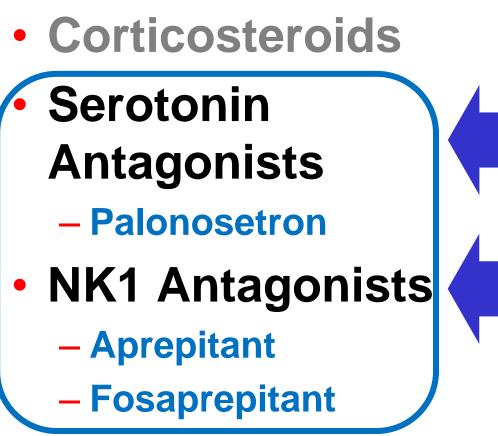

Conclusion

In patients with breast cancer treated with anthracycline plus cyclophosphamide chemotherapy and receiving the same antiemetic prophylaxis for acute emesis, dexamethasone was not superior to aprepitant but instead had similar efficacy and toxicity in preventing delayed emesis.


Study Design

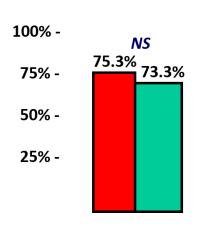

Complete Response Rate


Cumulative Complete Response Rate

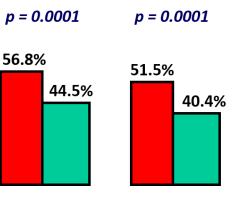

No use of rescue medication rate

Total Control Rate

MAJOR ANTIEMETIC CLASSES - Do we use Agents in these Classes Optimally? -



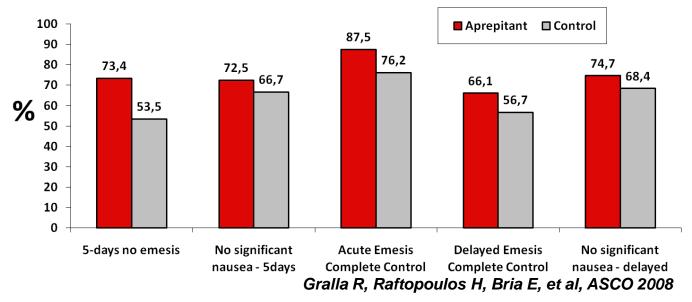
'New' backbones from >2010


Complete Control:

RANDOMIZED-DOUBLE BLIND TRIAL COMPARING: PALO + DEX versus GRANI + DEX in EITHER CISPLATIN OR "AC / EC" (N = 1114)

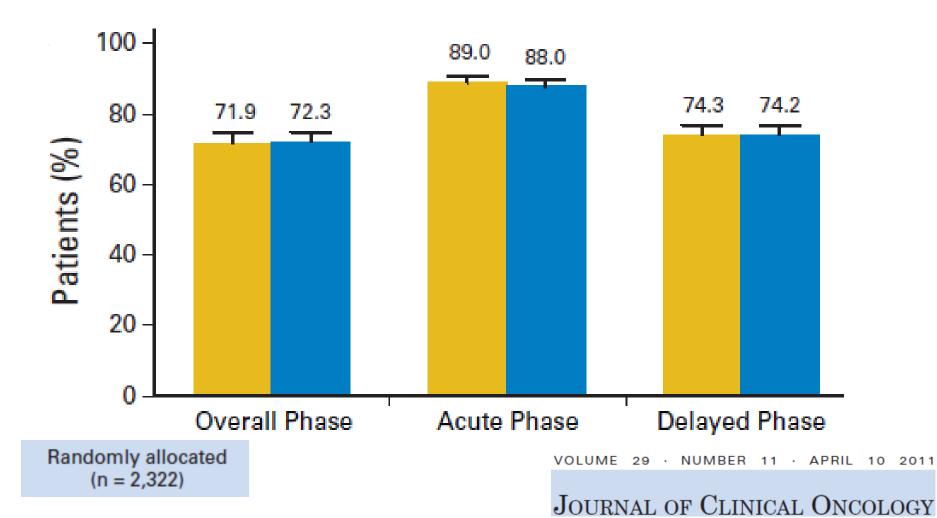
Palonosetron 0.75mg + Dexamethasone

Granisetron 40ug/kg + Dexamethasone



ACUTE DELAYED Reference: Saito et al. *Lancet Oncol*, 10; 115-124, 2009

Dex: 16mg IV day 1, then 8mg IV (Cis) / 4mg PO (AC) days 2 & 3


OVERALL

META-ANALYSIS IN 1527 PATIENTS: The Magnitude of Benefit of adding Aprepitant

Single-Dose Fosaprepitant for the Prevention of Chemotherapy-Induced Nausea and Vomiting Associated With Cisplatin Therapy: Randomized, Double-Blind Study Protocol—EASE

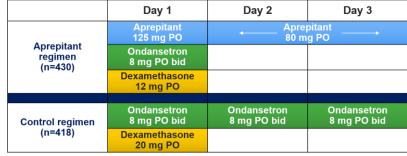
Steven Grunberg, Daniel Chua, Anish Maru, José Dinis, Suzanne DeVandry, Judith A. Boice, James S. Hardwick, Elizabeth Beckford, Arlene Taylor, Alexandra Carides, Fausto Roila, and Jørn Herrstedt

Background

Moderate emetogenic chemotherapy: ٠

- Risk of emesis: 30-90%
- Broad range of chemotherapeutic agents

Present state: To date, there are limited data supporting an NK₁ RA recommendation with other platinum agents such as carboplatin

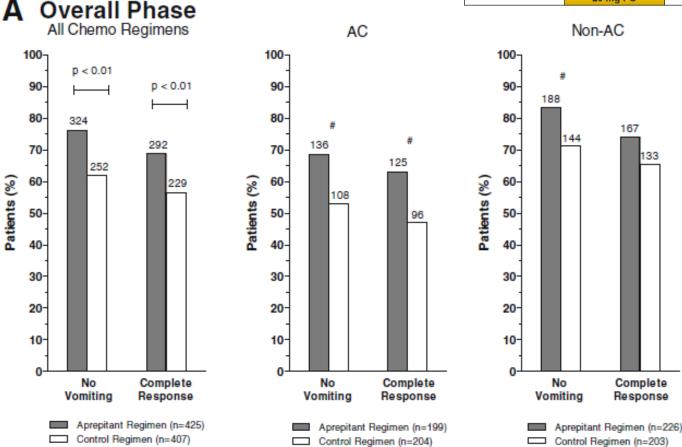

MARCE ISED MASCC/ISOO SUPPORTIVE CARE IN CANCER

Supportive Excellent Cancer

Jordan MASCC 2014

Aprepitant for the prevention of chemotherapy-induced nausea and vomiting associated with a broad range of moderately emetogenic chemotherapies and tumor types: a randomized, double-blind study

Bernardo L. Rapoport · Karin Jordan · Judith A. Boice · Arlene Taylor · Carole Brown · James S. Hardwick · Alexandra Carides · Timothy Webb · Hans-Joachim Schmoll

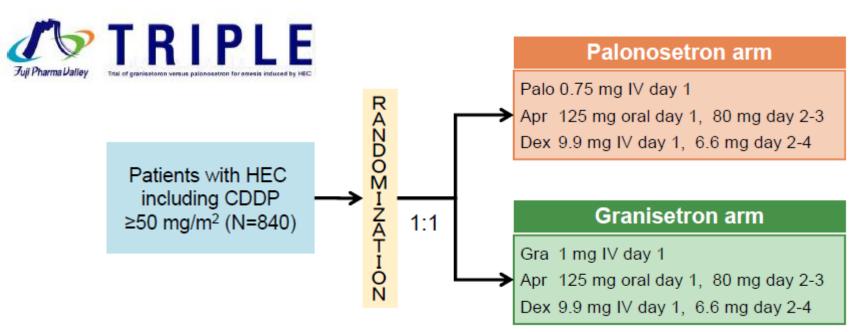


167

133

Complete

Response


Support Care Cancer (2010) 18:423-431

Recent developments in the prevention of chemotherapy-induced nausea and vomiting (CINV): a comprehensive review

Benefit of 3-drug NK₁RA regimen over 2-drug 5-HT₃RA control in patients receiving <u>Carboplatin</u>

Overall (0–120 h)	$APR + 5-HT_3RA + DEX$	$5-HT_3RA + DEX$	Absolute difference			
No emesis rate						
Gralla $(N = 192)^a$	84%	70%	14%			
Complete response						
Tanioka $(N = 91)^{\rm b}$	62%	52%	10%			
Ito (N = 134)	80%	67%	14%			
Yahata $(N=324)^c$	62%	47%	15%			
^a Post hoc analysis of the Rapopor	t study in a subgroup of patients.					
^b Ninety-eight percent of patients received carboplatin-based chemotherapy.						
^c All patients received carboplatin and paclitaxel.						
APR, aprepitant; DEX, dexamethasone.						

Jordan K, Ann Oncol 2015

Primary endpoint:

Complete response at overall (0-120 h) phase

Secondary endpoints:

- Complete response; acute (0-24 h), delayed (24-120 h)
- Complete control
- Total control
- Time to treatment failure
- Safety

Complete response: no emetic episodes and no rescue medication Complete control: no emetic episodes, no rescue medication, and no nausea or low grade nausea

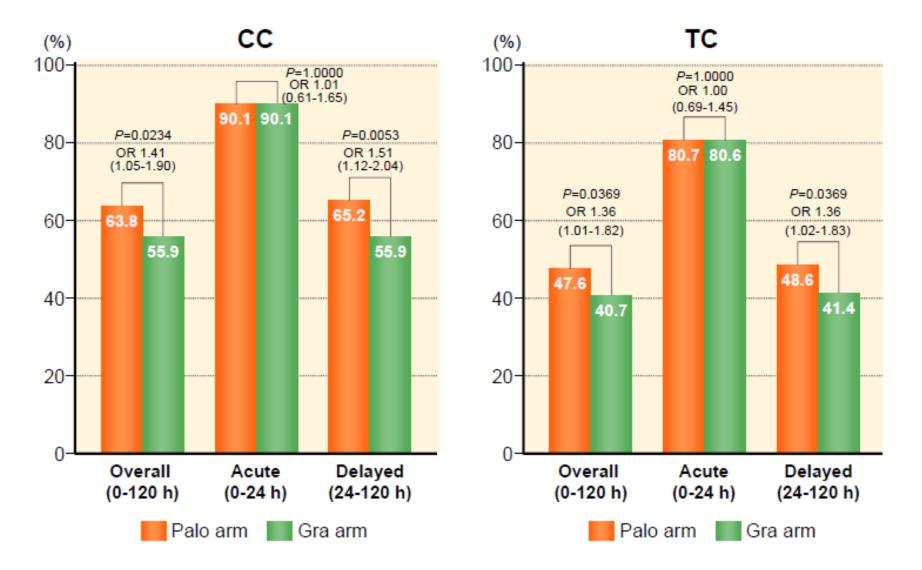
Total control: no emetic episodes, no rescue medication, and no nausea

Yamanaka et al, MASCC 2013

Complete Response

	Palo arm (N=414)	Gra arm (N=413)	Odds ratio (95% CI)	<i>P</i> -value
Overall (0-120 h)	65.7%	59.1%	1.35 (0.99-1.82)	0.0539*
Acute (0-24 h)	91.8%	91.8%	1.00 (0.58-1.71)	1.0000
Delayed (24-120 h)	67.2%	59.1%	1.45 (1.07-1.96)	0.0142

* Asymptotic CMH test: P=0.0461



		Palo arm (N=415)			Gra	13)	
		Grade 1	Grade 2	Grade 3	Grade 1	Grade 2	Grade 3
	Constipation	28.2%	22.4%	1.7%	30.0%	19.6%	1.5%
n	Hiccups	7.0%	6.0%	0.7%	5.6%	6.3%	0%
	Hyperglycemia	2.9%	1.7%	0%	2.2%	0.7%	0.2%
	Hyponatremia	2.2%	0%	0%	1.0%	0%	0.2%
	Hypoalbuminemia	1.0%	0.5%	0%	2.2%	0.2%	0%
	ALT increased	9.9%	0.5%	0%	9.9%	0.5%	0%
	AST increased	2.9%	0%	0%	4.1%	0%	0%

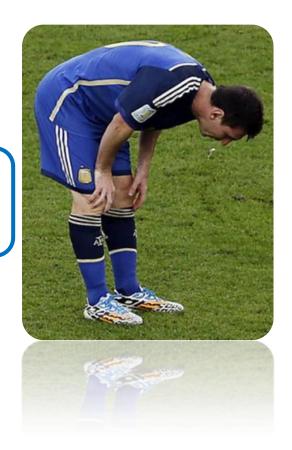
No grade 4 treatment-related adverse events were reported.

Yamanaka et al, MASCC 2013

Yamanaka et al, MASCC 2013

Aprepitant versus metoclopramide, both combined with dexamethasone, for the prevention of cisplatin-induced delayed emesis: a randomized, double-blind study

- Day 2–4: APR 80 mg vs MTC 20 mg 4 times/day [All plus DEX 8 mg bid].
- Before Chemo, all patients received PALO i.v. 0.25 + DEX 12 mg + APR 125 mg


Results	MTC + DE	X arm	APR	+ DEX	arm	Р	Results	MTC ·	+ DEX	APR	+ DEX		P
ACUTE	(n = 137)		(<i>n</i> =	147)			DELAYED	arm (r	ı = 137)	arm ((n = 142)	7)	
ACOIL	Ν	%	N		%		DELATED	N	%	N	(%	
Complete response ^a	130	94.9	139		94.6	1.00	Complete response ^a	113	82.5	118	:	80.3	0.38
Complete protection ^b	122	89.1	127		86.4	0.59	Complete protection ^b	102	74.5	108		73.5	0.90
Total control ^c	119	86.9	117		79.6	0.12	Total control ^c	97	70.8	102	(69.4	0.90
No vomiting	132	96.4	141		95.9	1.00	No vomiting	120	87.6	129	8	87.8	1.00
No nausea	119	86.9	118		80.3	0.16	No nausea	100	73.0	105		71.4	0.80
No significant nausea	123	89.8	129		87.8	0.71	No significant nausea	111	81.0	114	2	77.6	0.56
No. of emetic episodes	4						No. of emetic episodes ^d						
Mean	4.4			2.8		0.14	Mean		7.9		8.4		0.67
SD	3.2			2.6			SD		7.4		11.8		
Maximum severity of n	ausea ^e						Maximum severity of naus	sea ^e					
Mean	43.7			34.0		0.14	Mean	4	14.8		44.9		0.68
SD	21.6			21.7			SD	2	25.5		26.2		
Duration of nausea, ho	urs ^e						Duration of nausea, hours	e					
Mean	4.2			2.7		0.22	Mean	1	3.5		15.4		0.71
SD	5.3			3.2			SD]	6.5		19.0		

Conclusions: In cancer patients submitted to cisplatin-based chemotherapy, receiving the same antiemetic prophylaxis for acute emesis, A + D is not superior to M + D in preventing delayed emesis, and both treatments present similar toxicity.

Roila F, Ann Oncol 2015

Issues for **CINV**

- Do we reliably measure that?
- Do we use agents optimally?
- Are guidelines useful for clinical practice?
- What is new for CINV in 2015?
- Are we missing something?

"THREE OUT OF FOUR DOCTORS RECOMMEND"

Antiemetic Guidelines Groups

	MASCC/ESMO	ASCO	NCCN
Who judges the evidence?	25 International AE experts - multidisciplinary	c. 20 ASCO member AE experts + HSR individuals	Small NCCN group
Who does the major update?	25 International AE experts – multidisciplinary	Subgroup	Small NCCN group
Highly evidence based?	Yes	Yes	More Opinion than the others
Frequently updated?	Yes	Νο	Yes
<i>Main distribution:</i>	Print: Supp Care Cancer + Other Jnl <u>Web:</u> MASCC.org	Print: JCO	<u>Print:</u> Pamphlets <u>Web:</u> NCCN.org

ANTIEMETIC GUIDELINE PROCESS

Matti Aapro, MD Enzo Ballatori, PhD Emilio Bria, MD Rebecca Clark-Snow, RN, BSN, OCN Lawrence Einhorn, MD Birgitte Espersen, RN Petra Feyer, MD Richard Gralla, MD Steven Grunberg, MD Jørn Herrstedt, MD Paul Hesketh, MD Karin Jordan, MD

Mark Kris, MD Ernesto Maranzano, MD Alexander Molassiotis, RN, PhD Gary Morrow, PhD Ian Olver, MD, PhD Bernardo Rapoport, MD Cynthia Rittenberg, RN, MN, AOCN Fausto Roila, MD Mitsue Saito, MD Maurizio Tonato, MD David Warr, MD

Annals of Oncology 21 (Supplement 5): v232-v243, 2010

Guideline update for MASCC and ESMO in the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting: results of the Perugia consensus conference

EMETOGENIC POTENTIAL of I.V. Agents - Based on MASCC / ASCO / ESMO Guidelines -

Chemotherapy	Risk	Examples
High	> 90%	Cisplatin, streptozocin, carmustine, dacarbazine
Moderate	30-90%	Carboplatin, cyclophosphamide, doxorubicin, ifosfamide, oxaliplatin, irinotecan, alemtuzumab, azacitidine, bendamustine
Low	10-30%	Etoposide, gemcitabine, 5-FU, docetaxel, paclitaxel, cetuximab, catumaxomab, panitumumab
Minimal	< 10%	Vinca alkaloids, bleomycin, bevacizumab

Basch E et al. J Clin Oncol. 2911; 29:4198-4198 (ASCO Guideline). Roila, F. et al Ann Oncol. 2010;21:v232–v243.

Courtesy of Jordan J, 2014

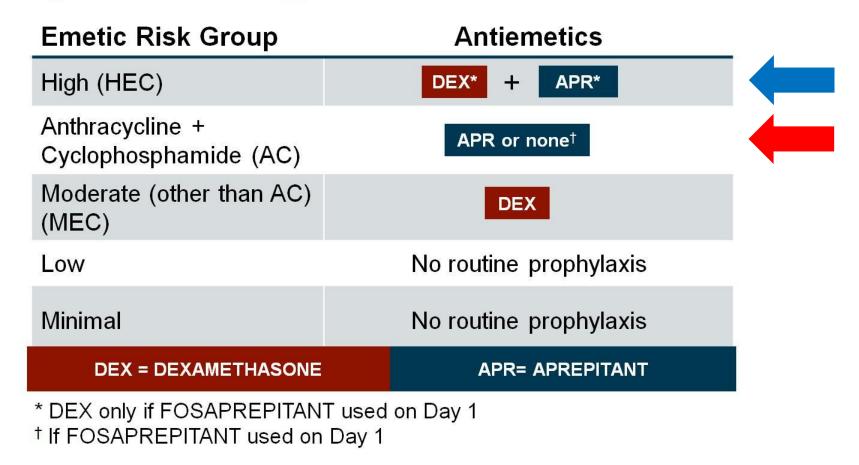
ANTIEMETIC GUIDELINES: MASCC/ESMO - The Process -

What are the criteria for consensus?

• Degree of consensus required:

- 67% or greater agreement among the panelists was required to change a guideline.
- Basis of evidence to change an existing guideline:
 - Compelling evidence was required based on well-conducted trials, generally with a comparator felt to be:
 - Consistent with guidelines
 - Representing best practice.

 Generally at least a 10% difference was considered to be the minimum degree of benefit sufficient for change.


2013 MASCC/ESMO Antiemetic Guideline Recommendations: Acute Setting

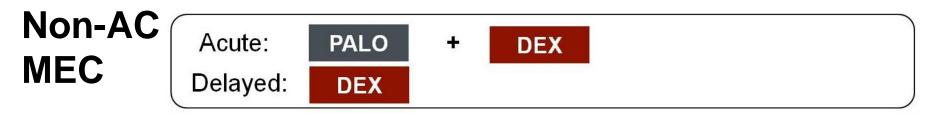
Emetic Risk Group		Antiemetics	
High (HEC)	5HT3 +	DEX + A	PR or FOS
Anthracycline + Cyclophosphamide (AC)	5HT3* +	DEX + A	PR or FOS
Moderate (other than AC) (MEC)	PALO +	DEX	
Low	DEX OR	5HT3 OR	DRA
Minimal	No ro	utine prophyl	axis
5HT3 = DEX = serotonin receptor antagonist	APR = APREPITANT; FOS= FOSAPREPITANT	PALO = PALONOSETRON	DRA = dopamine receptor antagonist

* NOTE: If the NK1 receptor antagonist is not available for AC chemotherapy palonosetron is the preferred 5-HT3 receptor antagonist.

MASCC/ESMO. www.mascc.org.

2013 MASCC/ESMO Antiemetic Guideline Recommendations: Delayed Setting

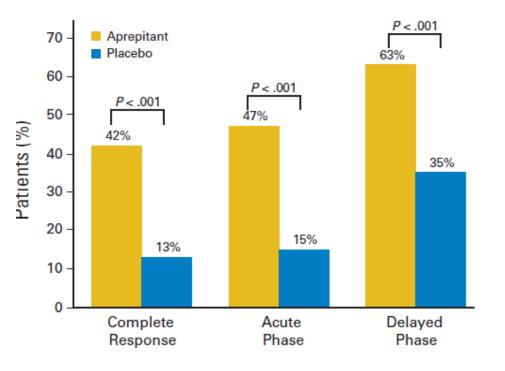
MASCC/ESMO. www.mascc.org.

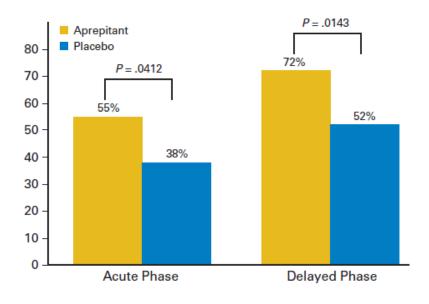

2013 MASCC/ESMO Antiemetic Guideline Recommendations:

AC

Warr DG, et al. J Clin Oncol. 2005; 23:2822-2830.

a. Schwartzberg L, et al. *Support Care Cancer.* 2013 Oct 19. [Epub ahead of print]; b. Gralla R, et al. *Ann Oncol.* 2003;14:1570-1577; c. Eisenberg P, et al. *Cancer.* 2003;98:2473-2482; d. Aapro MS, et al<u>. *Ann Oncol.* 2006;17:1441-1449; e. Saito M, et al. *Lancet Oncol.* 2009;10:115-124.</u>


High Level of Agreement Across 3 Major Antiemesis Guidelines: Similarities and Differences


MASCC/ESMOª, ASCO ^b , NCCN ^c	 Triple therapy (5HT₃ RA + APR + DEX) are recommended for patients receiving HEC or AC Oral aprepitant and IV fosaprepitant are considered to be clinically equivalent PALO is the preferred 5HT₃ RA in patients receiving MEC
ASCO ^b , NCCN ^c	 Classify AC as HEC
NCCN ^{c,d}	 PALO is the preferred 5HT₃ RA for patients receiving MEC and HEC

a. MASCC/ESMO. www.mascc.org; b. Basch E, et al. *J Clin Oncol.* 2011;29:4189-4198; c. NCCN. www.nccn.org. d. Saito M, et al. *Lancet Oncol.* 2009;10:115-124.

Randomized, Double-Blind, Placebo-Controlled, Phase III Cross-Over Study Evaluating the Oral Neurokinin-1 Antagonist Aprepitant in Combination With a 5HT3 Receptor Antagonist and Dexamethasone in Patients With Germ Cell Tumors Receiving 5-Day Cisplatin Combination Chemotherapy Regimens: A Hoosier Oncology Group Study

Days 1-2	Day 3	Days 4-5	Days 6-7	Day 8
Dexamethasone 20 mg + 5HT3-RA	Aprepitant 125 mg + 5HT3-RA	Aprepitant 80 mg + 5HT3-RA	Aprepitant 80 mg + dexamethasone 4 mg twice per day	Dexamethasone 4 mg twice per day
Dexamethasone 20 mg + 5HT3-RA	Placebo + 5HT3-RA	Placebo + 5HT3-RA	Placebo + dexamethasone 8 mg twice per day	Dexamethasone 4 mg twice per day

Albany C et al, JCO 2012

MAJOR ANTIEMETIC CLASSES AND GUIDELINES - Based on MASCC / ASCO / NCCN / ESMO Guidelines -

CLASS OF AGENT:	CHANGES LIKELY:
Corticosteroids	- Highly Emetic - Moderately Emetic <i>'Wiser' Use</i>
Serotonin Antagonists	 Highly Emetic Moderately Emetic Increased Palo suggested
NK ₁ Antagonists	 Highly Emetic Moderately Emetic <i>'Smarter' NK₁ (APR/Fosa) use</i>

Modified by Gralla R, ECCO-ESMO 2009

Recent developments in the prevention of chemotherapy-induced nausea and vomiting (CINV): a comprehensive review

Emetic risk category and guideline recommendations for the acute phase

Emetic risk category	Emetic risk	Chemotherapy examples	Recommended antiemetics	MASCC/ESMO	ASCO	NCCN
High	>90%	Cisplatin	NK ₁ RA	\checkmark	\checkmark	
		Carmustine	5-HT ₃ RA ^a	\checkmark		
		Dacarbazine	DEX			
AC ^b	85%	Cyclophosphamide	NK ₁ RA	\checkmark	\checkmark	
		Doxorubicin	5-HT ₃ RA ^a	\checkmark		
		Epirbubicin	DEX	\checkmark	\checkmark	
Moderate	30%-90%	Carboplatin	NK ₁ RA	-	с	d
		Ifosfamide	Palonosetron			
		Oxaliplatin	DEX	\checkmark	\checkmark	
		Irinotecan				

^cMay consider.

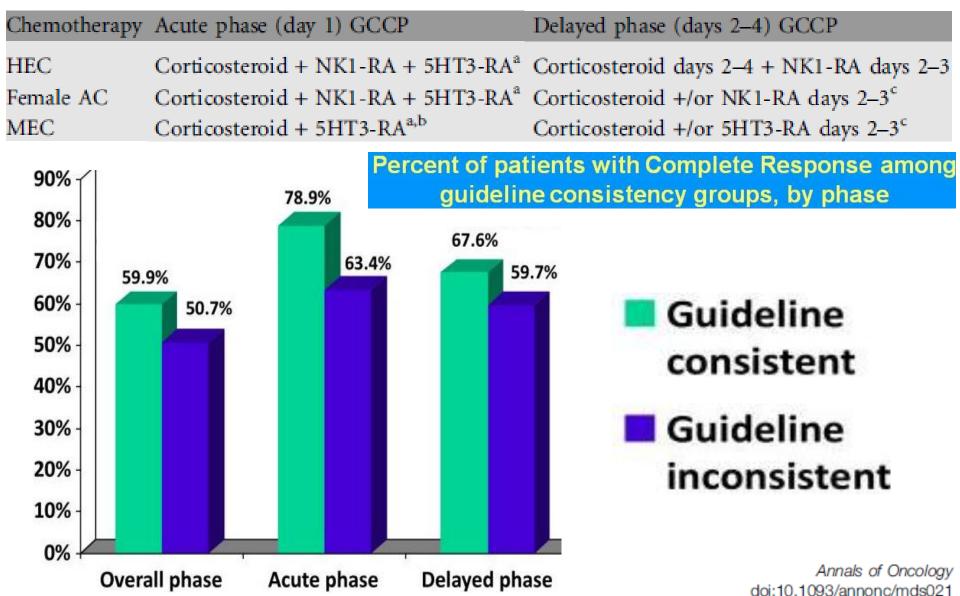
^d'In select patients where appropriate' (e.g. carboplatin, doxorubicin, epirubicin, ifosfamide, irinotecan, methotrexate).

Jordan K, Ann Oncol 2015

Recent developments in the prevention of chemotherapy-induced nausea and vomiting (CINV): a comprehensive review

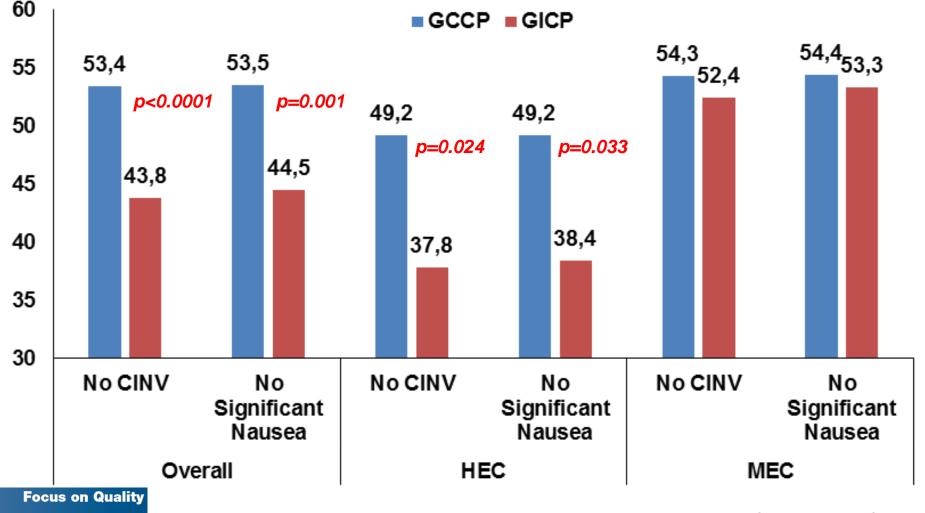
Recently approved antitumor agents with: No emetogenicity classification

No classification	n by any guideline	Classified only by NCCN	
Afatinib	Obinutuzumab	Ado-trastuzumab emtansine	Pertuzumab
Belinostat	Pembrolizumab	Crizotinib ^a	Pomalidomide
Ceritinib	Ramucirumab	Dabrafenib	Ponatinib
Ibrutinib	Siltuximab	Ofatumumab	Sorafenib
Idelalisib		Paclitaxel albumin	Trametinib


Jordan K, Ann Oncol 2015

Do Guidelines Improve Emetic Control? - Adherence to Guidelines -

- Adherence to (MASCC) guidelines significantly improves CINV control
- Utilization effects of adopting MASCC guidelines:
 - Marked *decrease of 5-HT3* in the delayed emesis period
 - Increased use of corticosteroids
 - Increased use of aprepitant
 - Estimated equal or decreased total costs
 - PEER Investigators, Ann Oncol 2012
 - INSPIRE Investigators, J Oncol Practice 2013
 - Molassotis et al, JPSM 2013
 - O'Kane et al. Proc. MASCC 2009
 - De Moor et al. Proc. ASCO 2013


The effect of guideline-consistent antiemetic therapy on chemotherapy-induced nausea and vomiting (CINV): the Pan European Emesis Registry (PEER) March^{1*} A Molasiotis² M Dicato³ L Pelá

M. Aapro¹*, A. Molassiotis², M. Dicato³, I. Peláez⁴, Á. Rodríguez-Lescure⁵, D. Pastorelli⁶, L. Ma⁷, T. Burke⁷, A. Gu⁷, P. Gascon⁸ & F. Roila⁹; on behalf of the PEER investigators

Antiemetic Guideline Consistency and Incidence of Chemotherapy-Induced Nausea and Vomiting in US Community Oncology Practice: INSPIRE Study

By James W. Gilmore, PharmD, Nancy W. Peacock, MD, Anna Gu, MD, PhD, Stephen Szabo, MD, Melissa Rammage, PharmD, MS, Joyce Sharpe, RN, OCN, Sally T. Haislip, RPh, Toni Perry, RN, Tim L. Boozan, RN, Katherine Meador, RN, Xiting Cao, PhD, and Thomas A. Burke, PharmD, PhD

Original Contribution

N (pts) = 1,295

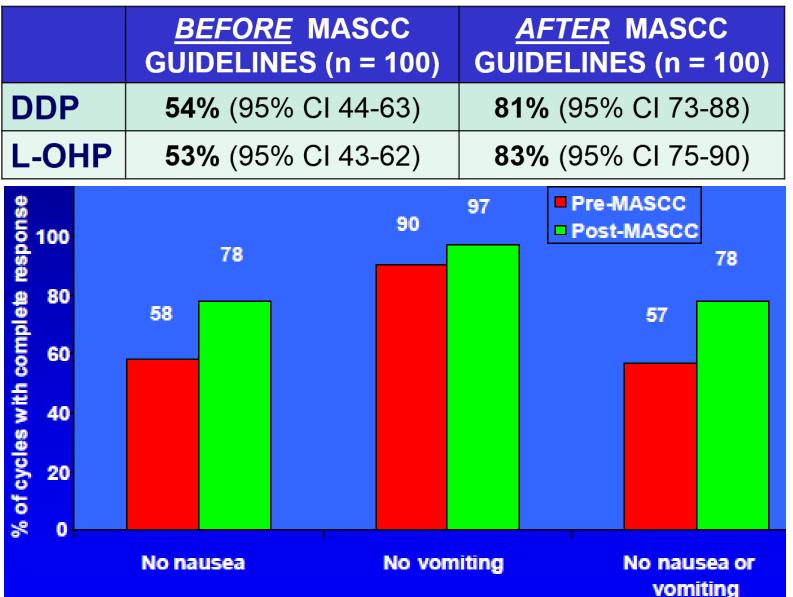
Copyright © 2013 by American Society of Clinical Oncology

jop.ascopubs.org

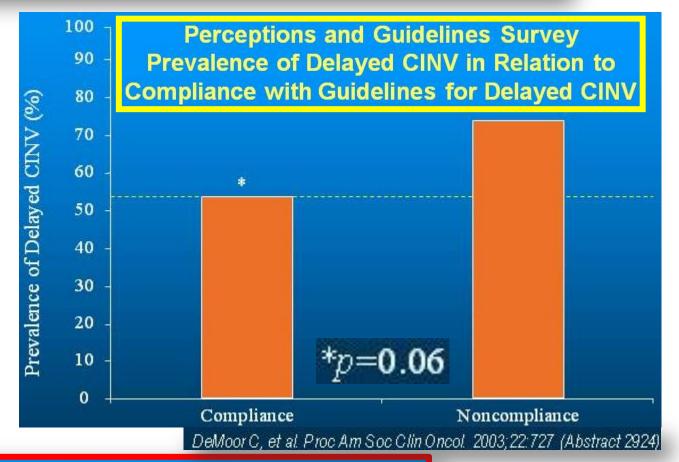
Evaluation of Risk Factors Predicting Chemotherapy-Related Nausea and Vomiting: Results From a European Prospective Observational Study

Alexander Molassiotis, RN, PhD, Matti Aapro, MD, Mario Dicato, MD, FRCP, Pere Gascon, MD, PhD, Sylvia A. Novoa, MD, Nicolas Isambert, MD, Thomas A. Burke, PhD, Anna Gu, MD, PhD, and Fausto Roila, MD

N (pts) = 991


		OR (95% CI)	P-value
Guidelines Consister	псу	1.56 (1.09-2.24)	<0.0001
Age 5	<50 0-64	0.40 (0.25-0.64) 0.54 (0.36-0.81)	<0.0001 0.0029
Sex		0.65 (0.42-0.98)	0.0409
Previous N/V		0.51 (0.34-0.76)	0.0164
Pre-chemo anxiety (>50)		0.37 (0.20-0.68)	0.0015
CR 1° course		6.63 (4.80-9.17)	<0.0001

Overall Phase, N (pts) = 517 2013


Journal of Pain and Symptom Management

Do Guidelines Improve Emetic Control?

COMPLETE CONTROL OF NAUSEA AND VOMITING

WHAT SHOULD BE THE IMPACT OF GUIDELINES?


Treatment per MASCC guideline increases control of N/V compared to control regimens used in studies by about 10%

Aapro M, Educational ASCO 2012

Annual '12 Meeting

ASCO

Adherence to Guidelines remains Suboptimal

■ HEC ■ MEC ■ LEC ■ Minimal ■ unknow

Main charateristics of patients treated with chemotherapies and receiving antiemetics

	HEC Pts.		MEC Pts.		LEC Pts.
NSCLC	1,795 (22.1%)	CRC	2,732 (30.0%)	MM	987 (20.8%)
Breast	1402 (17.3%)	NHL	2,179 (23.9%)	Pancreas	834 (17.5%)
SCLC	722 (8.9%)	Breast	548 (6.0%)	Breast	602 (12.7%)
Total	8116 (100%)	Total	9,115 (100%)	Total	4,756 (100%)
Pt-based	5,731 (70.6%)	AC-based	1,749 (19.2%)	Tx-based	945 (19.9%)
NK-1 use	2035 (25.1%)	NK-1 use	491 (5.4%)	NK-1 use	63 (1.3%)

Ref.: Adapted from Ricarte C, Anger C – 38th ECC 2013; P099

Avoidable Hospitalisations

A retrospective study of 154 patients with GI malignancies

		Hospitalizations						
			Potentially Avoidable					
	All		Yes		No			
Reason	No.	%	No.	%	No.	%	OR*	95% CI
No. of hospitalizations	201	100	39	19	162	81		
Categorical reason for hospitalization								
Treatment complication/adverse effect	57	28	9	23	48	30	Reference	
Cancer symptom	107	53	25	64	82	51	1.8	0.7 to 4.9
Noncancer medical condition	19	9	3	8	16	10	1.1	0.2 to 5.8
Planned hospitalization	18	9	2	5	16	10	0.4	0.0 to 3.8
Symptomatic reason for hospitalization1								
Fever/infection	54	27	12	31	42	26	1.1	0.3 to 3.2
Abdominal pain, undifferentiated	25	12	2	5	23	14	0.3	0.1 to 1.4
GI tract obstruction	19	9	3	8	16	10	0.5	0.0 to 5.1
Asthenia/dehydration	17	8	5	13	12	7	2.0	0.6 to 7.0
Ablation procedure	15	7	2	5	13	8	0.4	0.1 to 3.0
Nausea/vomiting	15	7	3	8	12	7	1.0	0.2 to 6.0
Other‡	56	28	12	31	44	27	1.9	0.8 to 4.8

Abbreviation: OR, odds ratio.

*ORs adjusted for clustering by patient (154 unique patients).

1For each row under the subheading, the reference level is patients without the listed characteristic.

[‡]Other symptomatic reasons for hospitalization representing less than 5% of admissions included biliary obstruction (eight hospitalizations), neurologic complaints (seven), thrombosis (seven), diarrhea (six), dyspnea (six), cardiovascular complaints (five), bleeding (four), renal failure (three), and miscellaneous complaints (10).

Nausea and vomiting acounted for 7% of the hospitalisations

Brooks GA, et al. J Clin Oncol. 2014;32(6):496-503.

Courtesy of Jordan J, 2014

Barriers to Physician Adherence

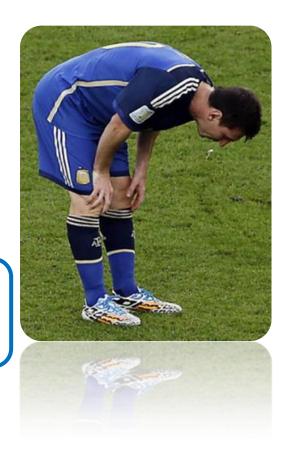
1. Knowledge

Lack of awareness of, and familiarity with, the guideline

2. Attitudes

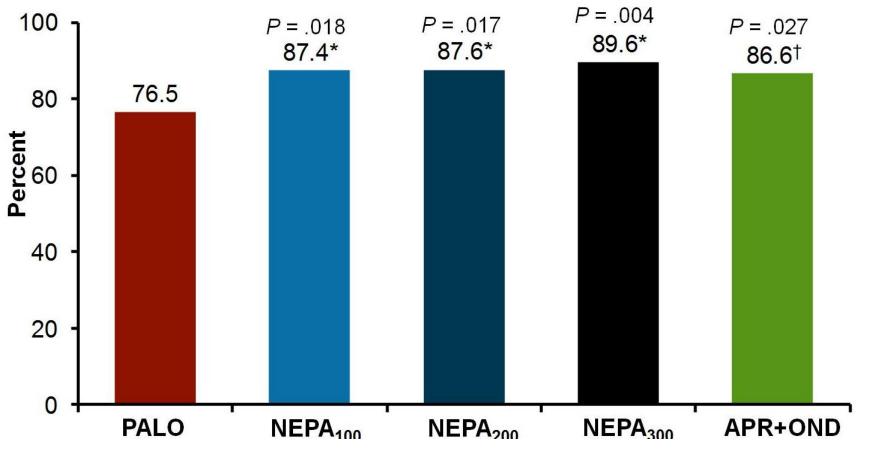
- Disagreement with evidence-based medicine and specific guidelines
- Lack of belief in guideline efficiency and ability to comply with guideline recommendations

3. Behaviour


- Patient preferences
 - Patients try to limit their number of medications

Cabana M, et al. JAMA. 1999;282:1458-1465.

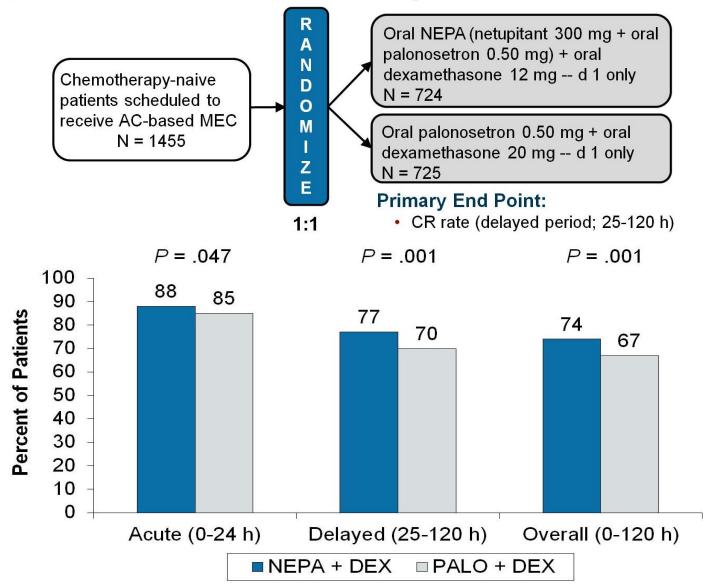
Courtesy of Jordan J, 2014


Issues for CINV

- Do we reliably measure that?
- Do we use agents optimally?
- Are guidelines useful for clinical practice?
- What is **new** for CINV in 2015?
- Are we missing something?

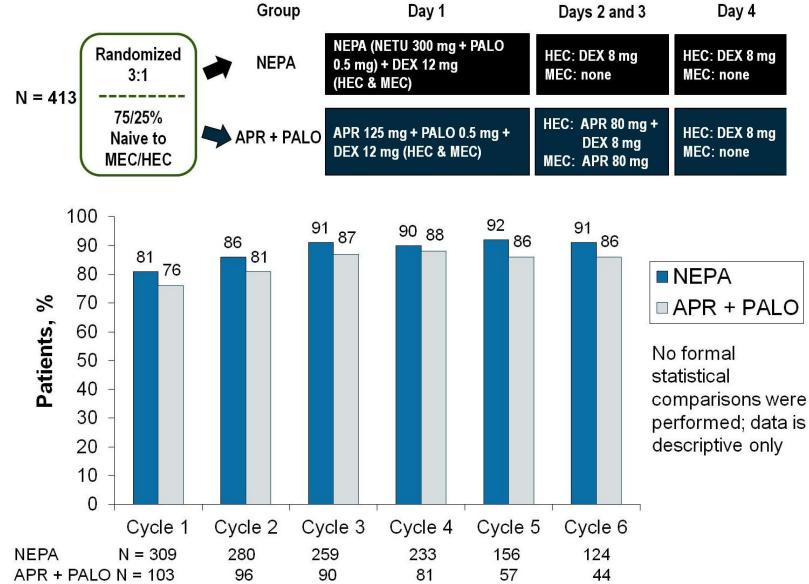
NEPA: Phase 2 Netupitant Dosefinding Study HEC Overall CR Rates

**P* value from logistic regression vs PALO †*P* value from a post hoc logistic regression analysis vs PALO



Hesketh P, Annals of Oncology 2014

Oral NEPA + Oral DEX vs Oral Palonosetron + Oral DEX in AC-based MEC

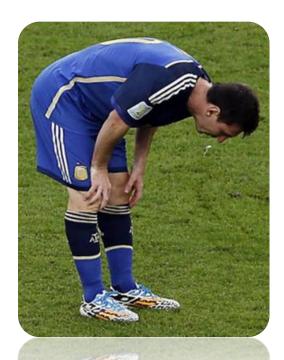

Multinational, Randomized, Double-blind Phase 3 Study

Aapro M, Annals of Oncology 2014

NEPA for CINV Following MEC/HEC Phase 3 Trial Overall CR Rates/6 Cycles

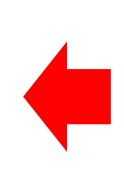
Gralla RJ, Annals of Oncology 2014

Recent developments in the prevention of chemotherapy-induced nausea and vomiting (CINV): a comprehensive review


Overview of cycle 1 efficacy for Rolapitant

Patients (%)	Study 1 (AC/non-AC MEC)			Study 2 (HEC)			Study 3 (HEC)		
	Rolapitant + GRAN +	GRAN + DEX	P value	Rolapitant + GRAN +	GRAN + DEX	P value	Rolapitant + GRAN +	GRAN + DEX	P value
	DEX (N = 666)	(N = 666)		DEX (N = 264)	(N = 262)		DEX (N=271)	(N = 273)	
Complete respo	nse								
Acute	83.5	80.3	0.143	83.7	73.7	0.005	83.4	79.5	0.233
Delayed	71.3	61.6	< 0.001	72.7	58.4	< 0.001	70.1	61.9	0.043
Overall	68.6	57.8	< 0.001	70.1	56.5	0.001	67.5	60.4	0.084
No significant n	nausea								
Acute	82.1	84.7	0.193	86.4	79.4	0.035	90.0	85.7	0.119
Delayed	72.7	69.4	0.194	73.5	64.9	0.034	74.5	68.9	0.137
Overall	70.6	66.5	0.118	71.6	63.0	0.037	72.7	67.8	0.203

Jordan K, Ann Oncol 2015


Issues for CINV

- Do we reliably measure that?
- Do we use agents optimally?
- Are guidelines useful for clinical practice?
- What is new for CINV in 2015?
- Are we missing something?

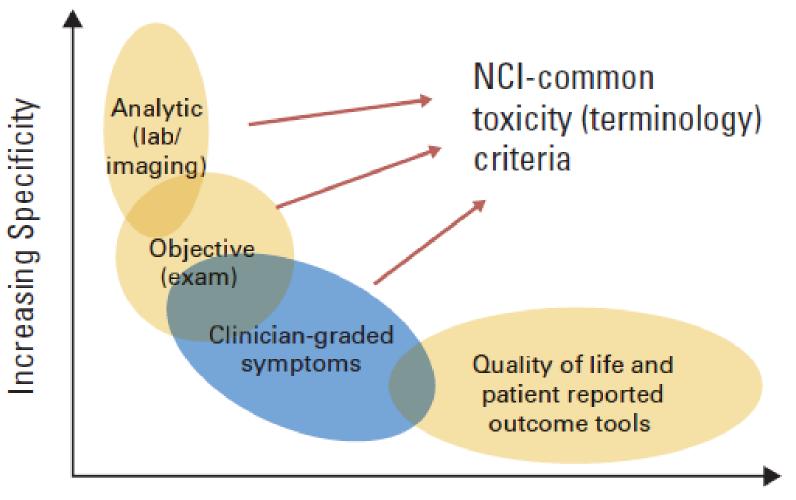
ANTIEMETIC RESEARCH -Emerging Area of Focus: <u>Controlling Nausea</u>

- Methodology Issues: <u>Nausea</u>
 - Should nausea be a primary endpoint in many clinical trials?
 - We need characterization of the nausea
 - onset, duration, intensity....
 - Consistency in reporting nausea among papers: mean/median; and < 5 mm, and < 25 mm
 - Affect of functional impact
- A MASCC Work shop on nausea is necessary

Modified from Gralla R, 2009

BUT WHAT IS NAUSEA?

- Nausea is subjective; Vomiting is objective. Therefore the accurate measurement of Nausea is more of an obstacle
- It is more difficult to interpret an animal model of Nausea than an animal model of Vomiting

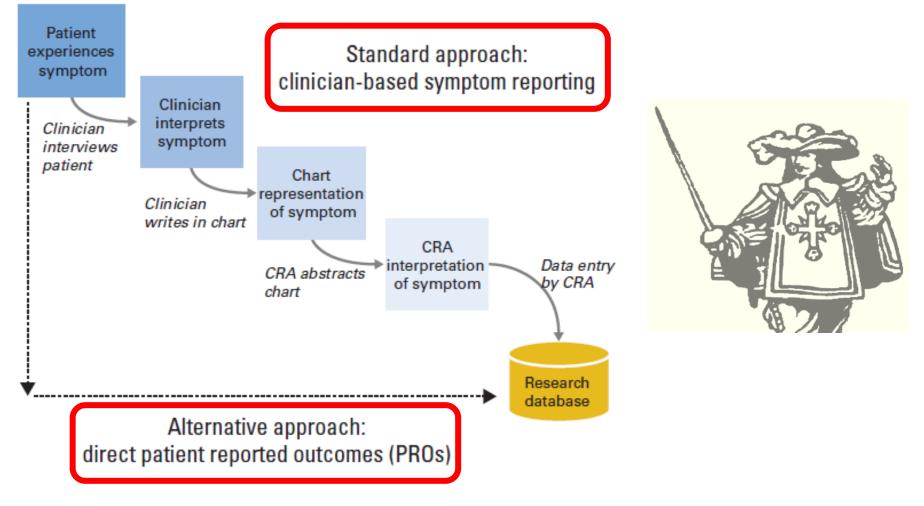

For PATIENTS nausea (if they understand the word at all) often means « feeling bad »

Aapro M & Grunberg S, Educational ASCO 2012

ASCO

Patient-Reported Outcomes and the Evolution of Adverse Event Reporting in Oncology

Andy Trotti, A. Dimitrios Colevas, Ann Setser, and Ethan Basch


Increasing Patient Recognition

VOLUME 25 · NUMBER 32 · NOVEMBER 10 2007

JOURNAL OF CLINICAL ONCOLOGY

Patient-Reported Outcomes and the Evolution of Adverse Event Reporting in Oncology

Andy Trotti, A. Dimitrios Colevas, Ann Setser, and Ethan Basch

"How do 'subjective' measures (such as nausea) compare with 'objective' measures?"

JOURNAL OF CLINICAL ONCOLOGY

How Do We Measure Patient Comfort During Treatment?

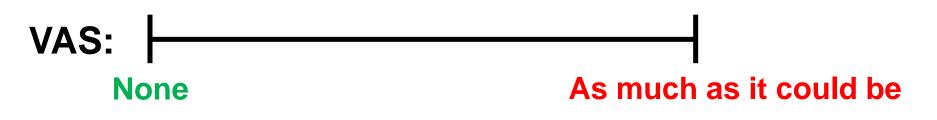
Assessment and documentation of symptoms, particularly those that are clearly subjective (PROs), is essential to provide effective treatment (S. Börjeson, Cancer Nursing, 1997)

Patient Monitoring

- In clinic
- Telephone follow- up

Tools

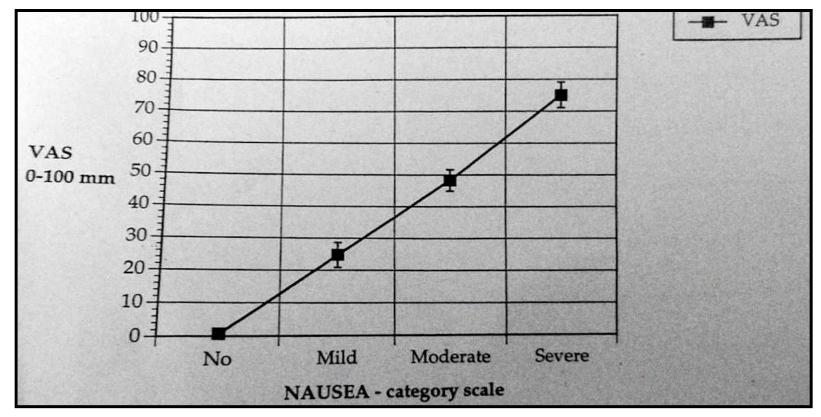
- Patient diary
- Visual analog scale (VAS)
- Verbal category scale (VCS)



ANTIEMETIC TREATMENT - Assessing Effectiveness [NAUSEA]-

NAUSEA

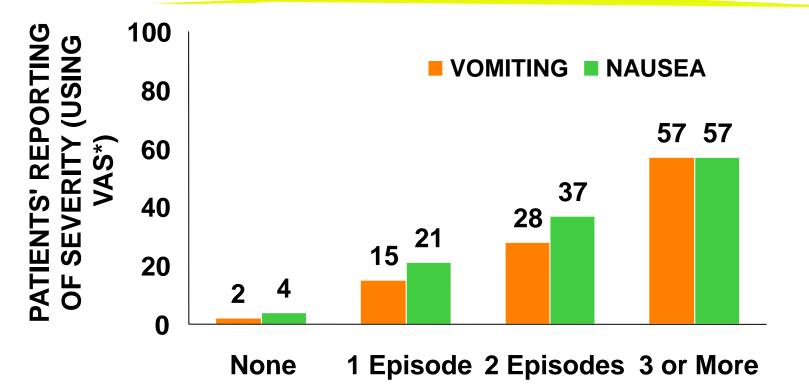
- Intensity (Patient-generated "VAS")
- Time of onset and duration
- Presence or absence: Complete Control


Question: How much nausea do you have?

Modified - Courtesy of Gralla, 2013

Relating <u>VAS Scores</u> to <u>Verbal Categorical Scale Scores</u>

Based on 348 Simultaneous Ratings


Mean visual analog scale ratings (with 95% confidence intervals) corresponding to each category on the verbal categorical scale

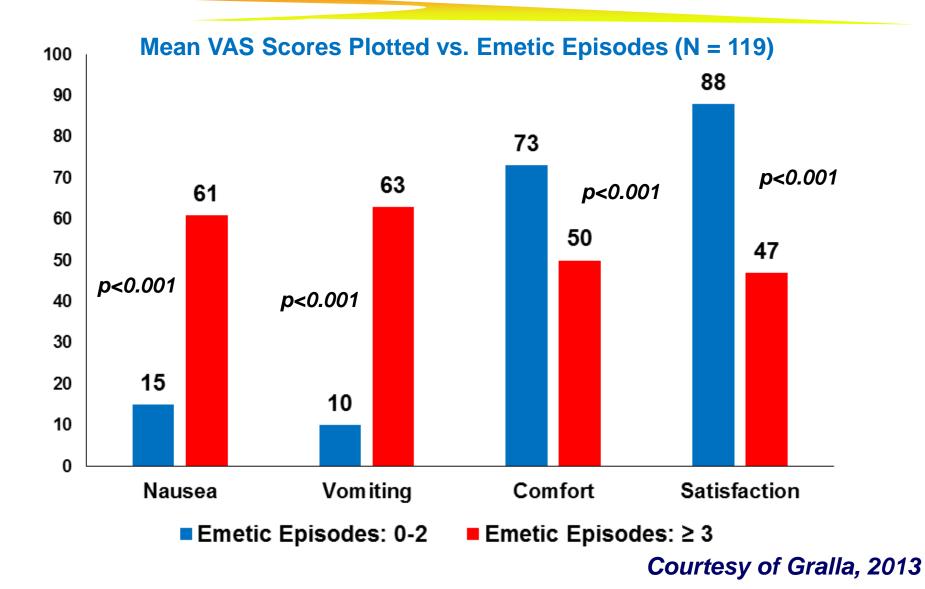
S. Börjeson et al, Cancer Nursing 1997

Courtesy of Gralla, 2013

ANTIEMETIC CONTROL

 Correlation of Nausea with Vomiting (119 Patients) -(Correlation of <u>Observed</u> and <u>Reported</u> Effects)

OBSERVED NUMBER OF VOMITING EPISODES

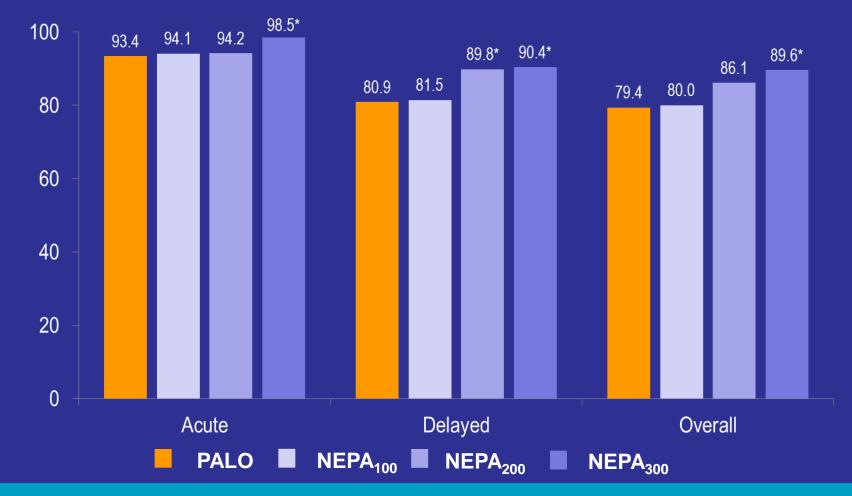

0 = The Least, 100 = The Most

Reference: Clark et al, ONS, 1985.

Modified - Courtesy of Gralla, 2013

OBSERVED EMETIC CONTROL AND PROS:

Focus on Nausea Control

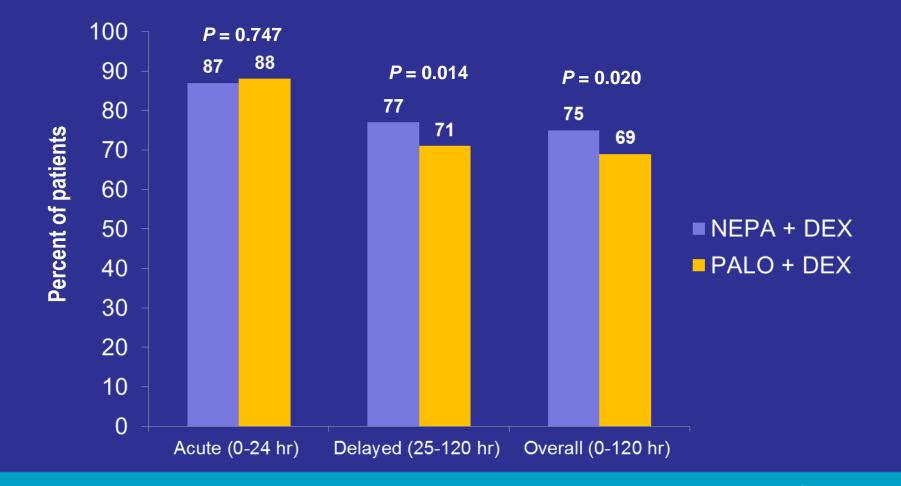


Measuring Nausea: Key-Points

- VAS provide *reproducible* and *accurate* measures of the PROs [Nausea]
 - The VAS score itself should be reported
- The concordance was:
 - Excellent: between VAS scores and the observed number of vomiting episodes
 - Well: between VAS Scores and Categorical Scales of Nausea
- The numerical scale for Nausea, based on the VAS, has been shown to have good psychometric properties
- It may be that both VAS scores and verbal categorical scores give complementary information.

Courtesy of Gralla, 2013

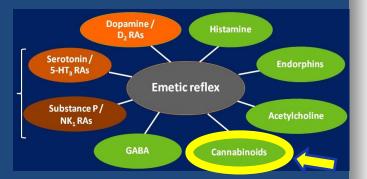
Efficacy of NEPA (Netupitant + PALO) for prevention of **CINV** following HEC No Significant Nausea (Maximum VAS < 25 mm)



* P ≤ 0.05 compared with PALO; not adjusted for multiple comparisons PRESENTED AT:

AS

Phase 3 study of [NEPA + PALO] versus [PALO] for prevention of CINV following MEC


No Significant Nausea Rates (Maximum VAS Score <25 mm)

PRESENTED AT:

Nausea and Appetite

- Several agents that have appetite stimulating properties also have anti-nausea properties
 - Corticosteroid
 - Megestrol
 - Olanzapine
 - Dronabinol

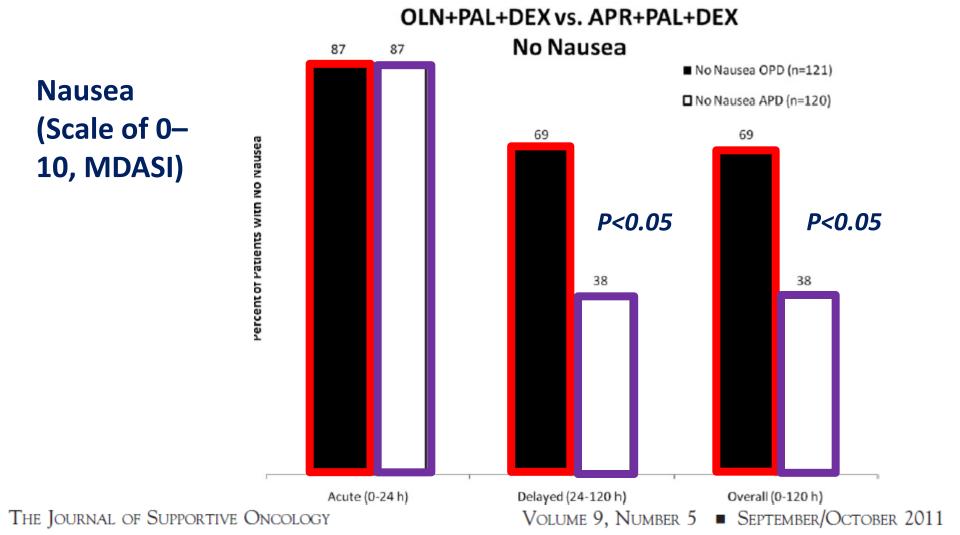
- Nausea/anorexia may be a more valid construct than nausea/vomiting
- A low-dose anti-nausea agent might complement anti-vomiting agents

Modified by Grunberg S & Clark-Snow, Educational ASCO 2012

'New' Options: OLANZAPINE

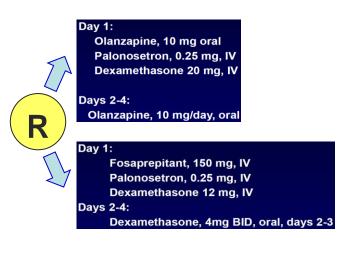
Athypical antipsychotic

٠

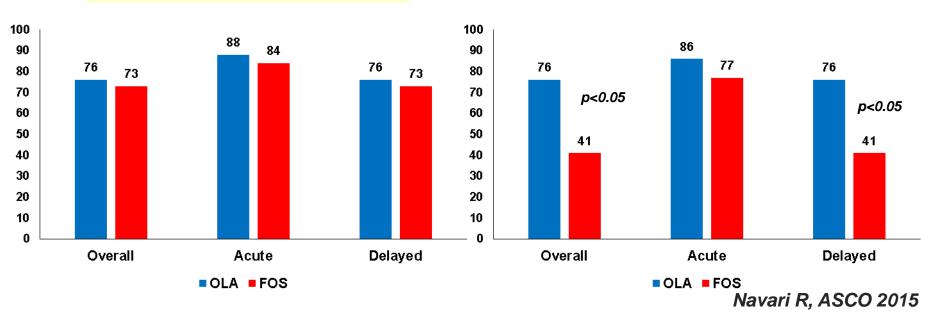

٠

Side effetcs:

- Sedation **Broad spectrum of activity against:** Dizziness Dopamine (D1, D2, D3 and D4) Weight gain Serotonin (5HT2A. 5HT2C, 56HT3, 5HT6) **Extrapyramidal symptoms Catecholamines (alfa-1 adrenergic) Metabolic syndrome** Histamine (H1) **Onset of diabetes mellitus** Acetylcolhine (m1-m4) **Increased cholesterol** Dopamine / **Histamine** D₂ RAs Serotonin / Endorphins 5-HT₃ RAs **Emetic reflex** Substance P/ Acetylcholine NK₁ RAs GABA Cannabinoids
 - Modifed Gunberg S, ASCO 2012; Bosnjiak MASCC 2014


Olanzapine Versus Aprepitant for the Prevention of Chemotherapy-Induced Nausea and Vomiting: A Randomized Phase III Trial

Rudolph M. Navari, MD, PhD, Sarah E. Gray, BS, and Andrew C. Kerr, BS



Olanzapine (OLN) Versus Fosaprepitant (FOS) for the Prevention of Chemotherapy-Induced Nausea and Vomiting (CINV) in Patients Receiving Concurrent Chemo-Radiation Treatment: A Randomized, Double-Blind, Phase III Trial.

- Patients unrgoing concurrent 60-70 Gy RT (Random after 2 wks of RT) prior to DDP (≥70 mg/mq) + 5FU (HEC)
- Advanced Esophageal and HNC
- End-point:
 - Complete response (No emesis, no rescue 24 hours, days 2-5, and 120 hours CT)
 - Control of nausea (No nausea, 0 on scale of 0-10 24 hours, days 2-5, and 120 hours CT)

No Nausea

Complete Control

Olanzapine for Preventing CINV Alliance A221301

Results consistent with current NCCN guidelines recommending olanzapine regimen as an option for CINV prophylaxis for patients receiving HEC $\frac{Patients}{receiving HEC} \longrightarrow S \longrightarrow R$

Olanzapine + 5-HT₃ + Aprepitant + dexamethasone

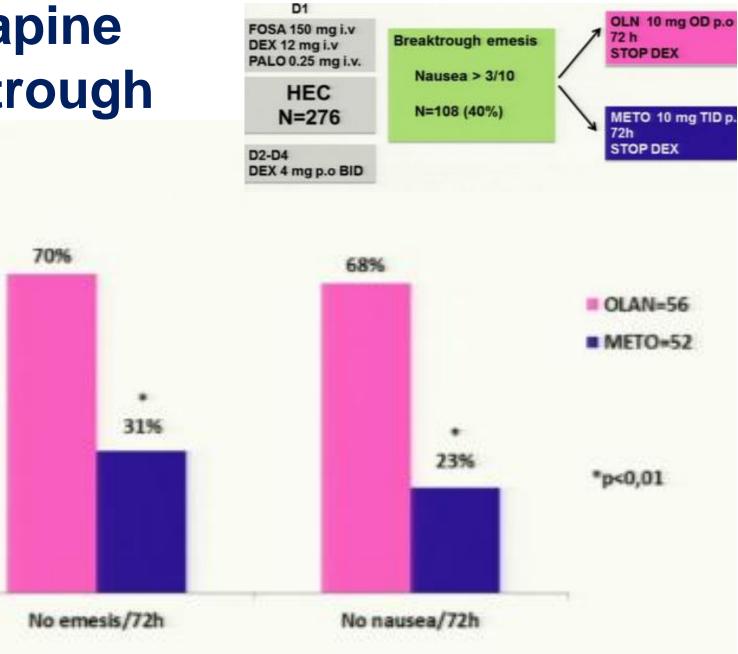
Placebo + 5-HT₃ + Aprepitant + dexamethasone

Endpoints Primary: No nausea Secondary: Compete response (no emesis, no rescue)

Navari R, ASCO 2015

Olanzapine Breaktrough

100%


80%

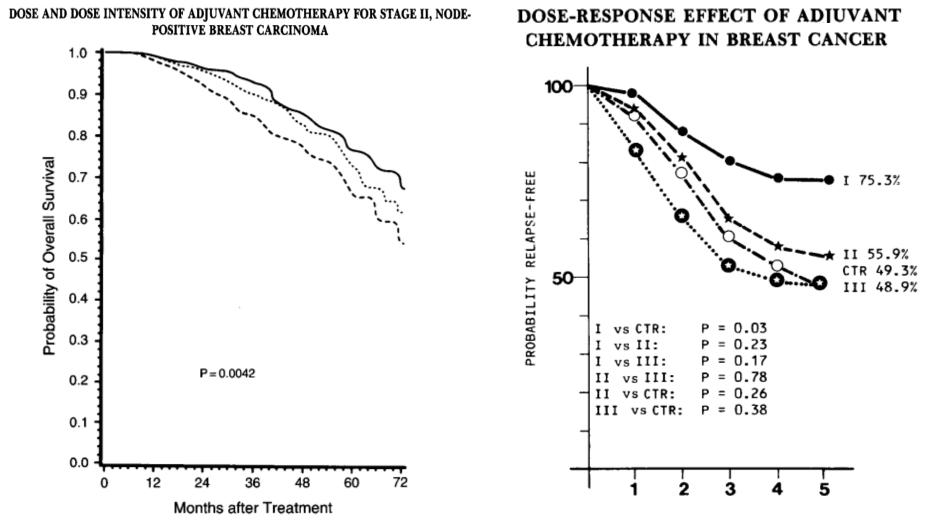
60%

40%

20%

0%

Navari et al. Support Care Cancer (2013) 21:1655-1663


THE MULTIPLE ROLES FOR 'SUPPORTIVE CARE' IN CANCER

- Reduce or eliminate associated symptoms and side-effects
- Preserve or improve quality of life
- Permit safe out-patient treatment
- Enhance the use of the most effective antineoplastic agents

Modified - Courtesy of Gralla R, 2009

Breast Cancer: RDI and outcome

Wood WC, NEJM 1994

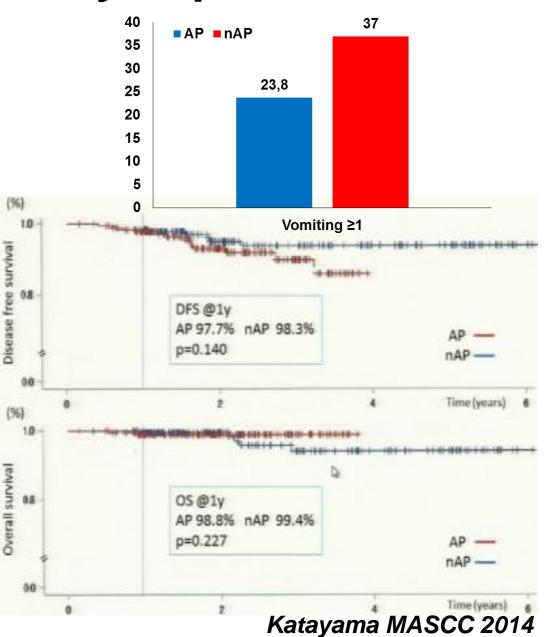
Bonadonna G, NEJM 1994

Decreasing CINV may improve RDI and outcome?

Jan. 2008 ~ Dec. 2012, 504 pts treated with <u>A</u> AP group : 205 pts, nAP group 299 pts

propensity score (PS)*

AP group : 181 pts, nAP group 181 pts


adjustment variables (age, BMI, use of taxanes, dose of corticosteroids and institute)

nAP group

- Corticosteroid* on day 1 (iv) and day 2-4 or 5 (oral)
- 5HT3 receptor antagonist** on day 1 (iv)

AP group

- oral aprepitant 125 mg on day 1, then 80 mg on days 2 and 3
- corticosteroid on day 1 (iv) and day 2-4 or 5 (oral)
- 5HT3 receptor antagonist on day 1 (iv)

* : dexamethasone, betamethasone ** : granisetron, palonosetron, ramosetron

Conclusions

- Findings from CINV clearly indicate that this is a *Patient-Centered Care*
- Evidence that <u>clinicians underestimate</u> incidence and severity of vomiting and (particularly) nausea
- Use <u>guidelines</u> to improve control!
 - Triple-drug approach is THE standard in the majority of settings
 - CINV control has significant implications for QoL and outcome
- New options to meet patient compliance are under investigation
- Pivotal data indicate that PROs can be adopted:
 - High degree of patient engagement and compliance
 - Validations are needed to assess how much may reliably complement clinician-reported data.
- Staff education is essential!
 - Monitor symptoms throughout treatment
 - Collection of PROs via checklist reviewed by staff

