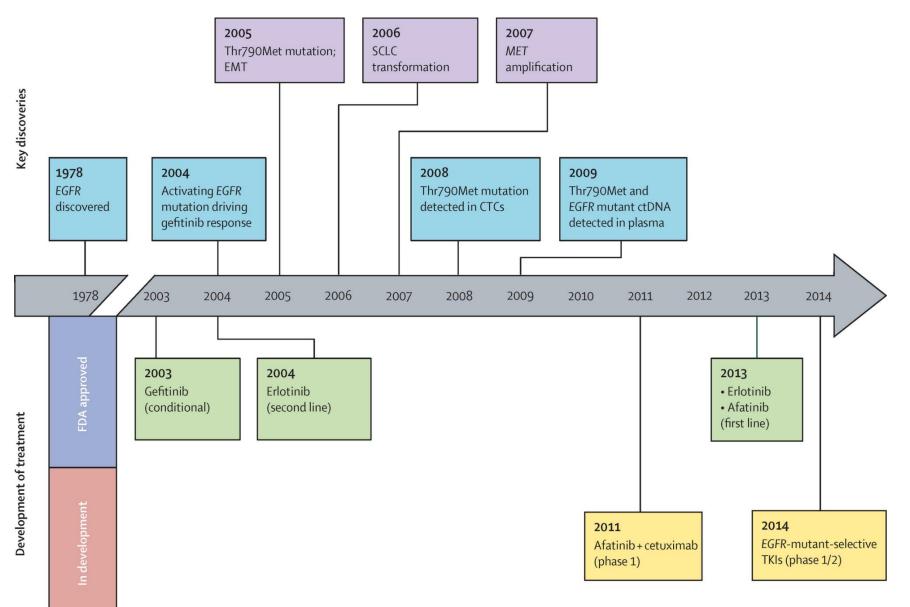


Dalla prima generazione di inibitori di

EGFR al superamento delle resistenze Rita Chiari


Oncologia Medica Azienda Ospedaliera di Perugia

Targeted therapy for oncogene-driven lung cancer

Kris MG et al, JAMA May 2014

EGFR timeline:...a quite long lag time from key discoveries to development of treatments!

NSCLC EGFR-mutated

• First-line

In first line we have to always use an EGFR-TKI?

• Which EGFR-TKI? First, second or third generation?

What about uncommon mutations?

- Mechanisms of resistance
 - Primary Resistance
 - Acquired Resistance
- PD1-axis and EGFR-TKIs

NSCLC EGFR-mutated

• First-line

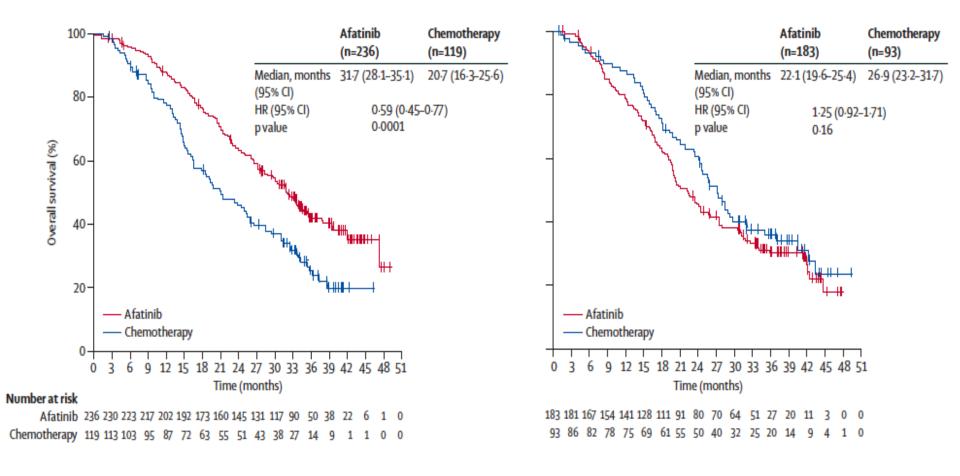
In first line we have to always use an EGFR-TKI?

• Which EGFR-TKI? First, second or third generation?

What about uncommon mutations?

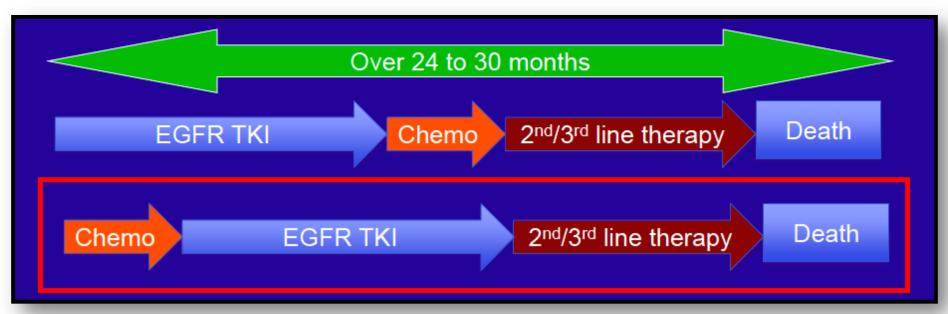
- Mechanisms of resistance
 - Primary Resistance
 - Acquired Resistance
- PD1-axis and EGFR-TKIs

EGFR-TKIs in first-line in EGFR-M+

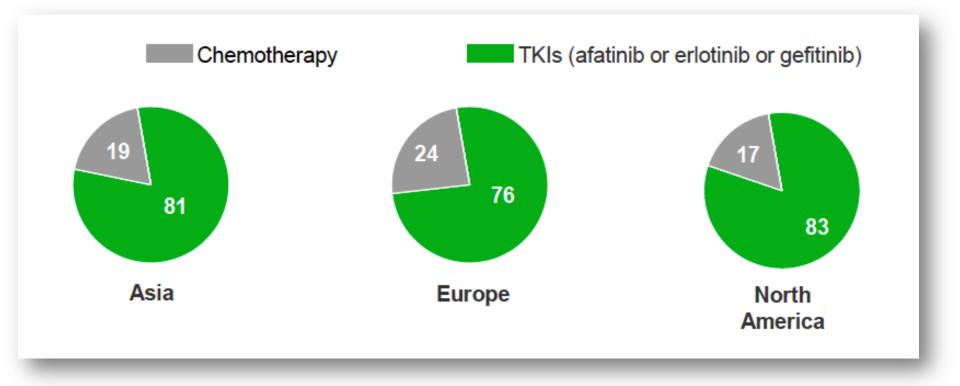

_					
	Study	N (EGFR mut+)	RR (%)	Median PFS (Months)	Median OS (Months)
	IPASS ^{1,2}	261	71.2 vs. 47.3	9.5 vs. 6.3	21.6 vs. 21.9
ITINIB	First-SIGNAL ^{3,}	42	84.6 <i>vs.</i> 37.5	8.0 vs. 6.3	27.2 vs. 25.6
GEFI	WJTOG 3405 ^{4,5}	172	62.1 vs. 32.2	9.2 vs. 6.3	34.8 vs. 37.3
	NEJGSG002 ^{6,7}	228	73.7 vs. 30.7	10.8 vs. 5.4	27.7 vs. 26.6
	OPTIMAL ^{8,9}	154	83 <i>vs.</i> 36	13.1 <i>vs.</i> 4.6	28.8 vs. 22.7
	EURTAC ^{10,11}	173	58 <i>vs.</i> 15	9.7 vs. 5.2	28.6 vs. 22.1
	LUX LUNG-3 ^{12,14}	345	56 vs. 23	11.1 <i>vs.</i> 6.9	Pooled analysi
AFAT	LUX LUNG-6 ^{13,14}	364	66.9 vs. 23.0	11.0 <i>vs.</i> 5.6	27.3 vs. 24.3

Mok TS et al. N Engl J Med 2009; 2. Fukuoka M et al. J Clin Oncol. 2011; 3. Han JY et al. J Clin Oncol. 2012; 4. Mitsudomi T et al. Lancet Oncol 2010;
Yoshioka H et al. ASCO 2014 Abstract 8117; 6. Maemondo M, et al. N Engl J Med 2010; 7. Inoue A et al. Ann Oncol. 2013; 8. Zhou C et al. Lancet Oncol. 2011;
Shou C et al. ASCO 2012 Abstract 7520; 10. Rosell R et al. Lancet Oncol. 2012; 11. Costa C et al. Clin Cancer Res. 2014;
Sequist LV et al. J Clin Oncol. 2013; 13. Yang JC-H, et al, Lancet Oncol 2014; Yang JC-H et al, Lancet Oncol 2015

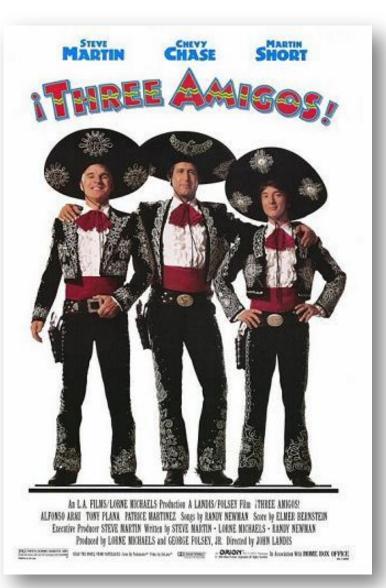
Afatinib versus chemotherapy: OS by EGFR mutation type


Exon 19

Exon 21


Yang J C-H, et al. Lancet Oncol 2015

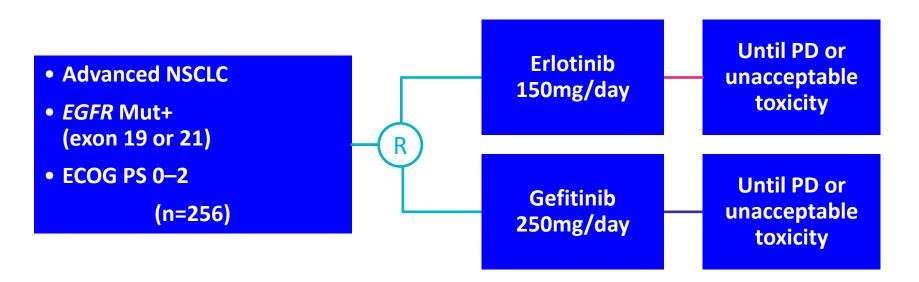
First line TKI in EGFRM+ (common)


- The main reason is the risk that some patients will not arrive to second line!!
- Chemotherapy in first line in EGFRM+ only if highly symptomatic, no tissue available, plasma EGFR mut neg
- Reversible EGFR TKIs are the best option also both in Maintenance (SATURN end INFORM) and in 2nd line (subgroup analysis of INTEREST) if the EGFRM+ pt has not received the drug in first-line

Survey (n = 562, 10 countries): first-line choice in EGFR mutated

Spicer et al, ELCC 2015

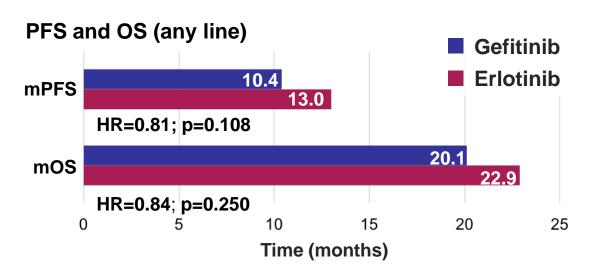
Which EGFR-TKI in first-line in EGFR-M+?

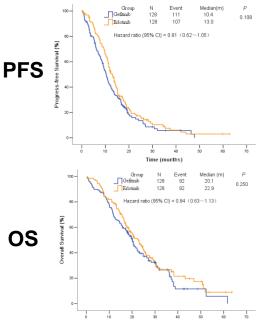


 Irreversible = Reversible EGFR TKIs in first-line treatment in terms of ORR and PFS

• Phase III trials of Irreversible vs Reversible EGFR TKIs in first line are ongoing

 This question might be obsolete when we will have the results!


Erlotinib versus gefitinib in patients with EGFR^{mut+}: CTONG0901 study



Primary end-point: mPFS

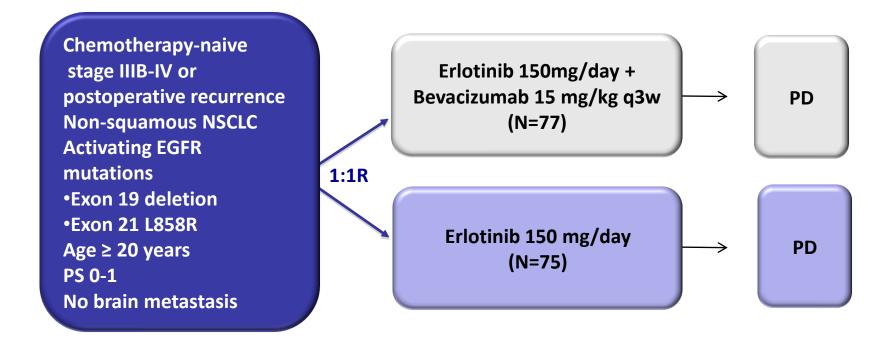
Yang, et al. WCLC 2015

CTONG0901: efficacy and toxicity

Time (months)

Treatment-emergent AEs >10% in either arm

		tinib 128	Erlotinib n=128		
AE, %	All grade	Grade ≥3	All grade	Grade ≥3	
Rash	63	0	70	2	
Cough	30	0	23	0	
Diarrhoea	19	0	17	0	
Hand and foot syndrome	13	0	6	0	
Nail changes	13	0	19	0	
Anorexia	12	0	5	0	

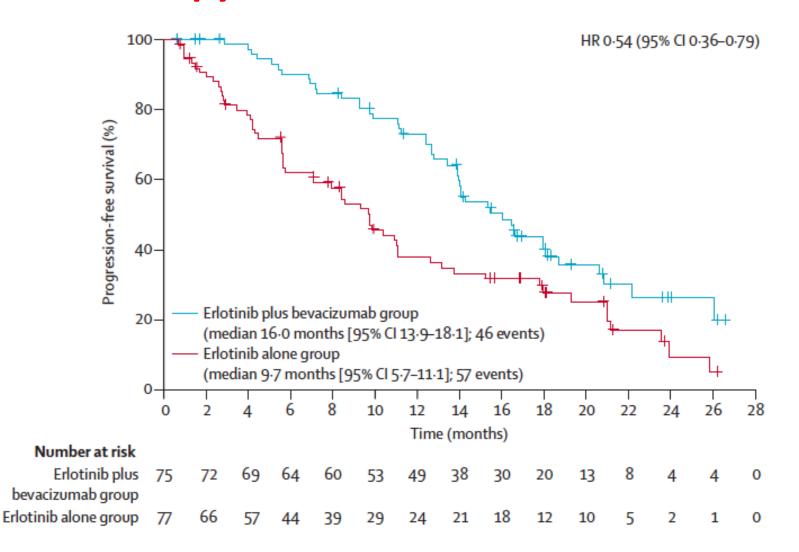

Indirect comparison of toxicities reported with gefitinib or erlotinib or afatinib

		Gefiti	nib		Erlo	tinib	Afatinib	
	IPASS* [48] n = 607	First SIGNAL* [49] n = 159	WJTOG 3405 [50] n = 87	NEJ002 [51] n = 114	OPTIMAL [52] n = 83	EURTAC [53] n = 84	LUX-Lung 3 [54] n = 230	LUX-Lung 6 [55] n = 239
Rash	66.2 (3.1)	72.4 (29.3)	85.0 (2.3)	71.0 (5.3)	73.0 (2)	79.7 (13.0)	89.1 (16.2)	80.8 (14.2)
Diarrhoea	46.6 (3.8)	49.7 (2.5)	54.0 (1.1)	34.2 (0.9)	25.0 (1)	57.1 (5)	95.2 (14.4)	88.3 (5.4)
Fatigue	16.8 (0.3)	28.3 (10.0)	39 (2.2)	10.5 (2.6)	5.0 (0)	57.1 (0)	17.5 (1.3)	10 (0.4)
Anorexia	21.9 (1.5)	44.6 (13.8)	NR	14.9 (5.3)	NR	31 (0)	20.5 (3.1)	10 (1.3)
Stomatitis	17.0 (0.2)	40.2 (1.9)	21.8 (0)	NR	13.0 (1)	NR	72.1 (8.7)	51.9 (5.4)
Paronychia	13.5 (0.3)	NR	32.1 (1.1)	NR	4.0 (0)	NR	56.8 (11.4)	32.6 (0)
Vomiting	12.9 (0.2)	18.9 (0)	NR	NR	1.0 (0)	NR	17.0 (3.1)	9.6 (0.8)

*Shown data include all patients treated with gefitinib

Data are reported as percentage of AEs of any grade and, in parenthesis, of grade 3

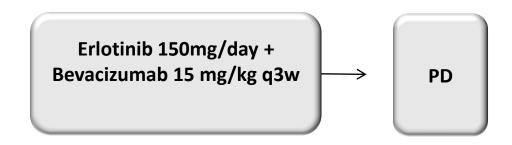
Erlotinib versus erlotinib+bevacizumab as first-line therapy in EGFR^{mut+} NSCLC: phase IIR study



Primary end-point: PFS

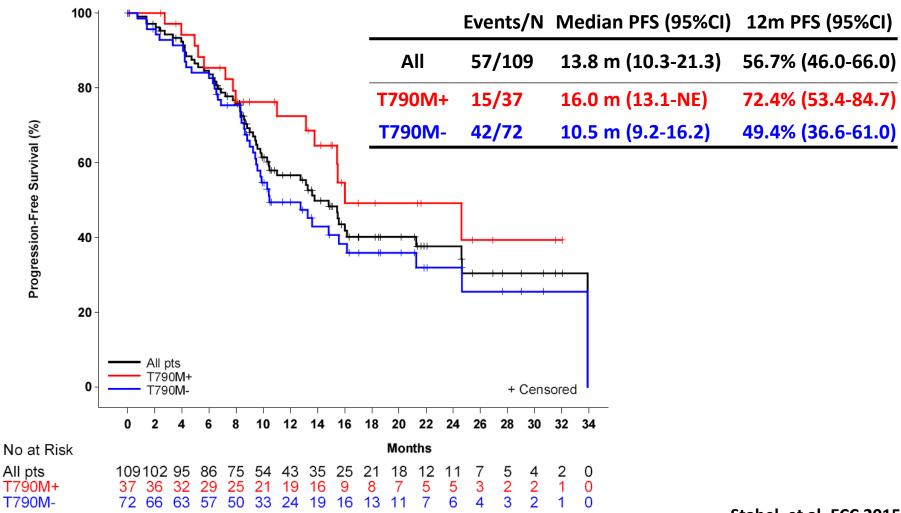
Secondary End points: OS, ORR, QoL, symptoms improvement FACT-L scale and safety

Seto T, et al. Lancet Oncol 2014


Erlotinib versus erlotinib+bevacizumab as first-line therapy in EGFR^{mut+} NSCLC: PFS

Seto T, et al. Lancet Oncol 2014

Erlotinib+bevacizumab as first-line therapy in EGFR^{mut+} NSCLC: the BELIEF phase II study


Chemotherapy-naive stage IIIB-IV or postoperative recurrence Non-squamous NSCLC Activating EGFR mutations •Exon 19 deletion •Exon 21 L858R •Brain metastases allowed

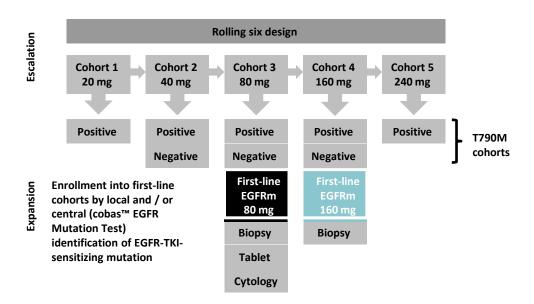
Primary end-point: PFS

Stahel, et al. ECC 2015

BELIEF: PFS by T790M mutation

Stahel, et al. ECC 2015

BELIEF: data on context with other studies



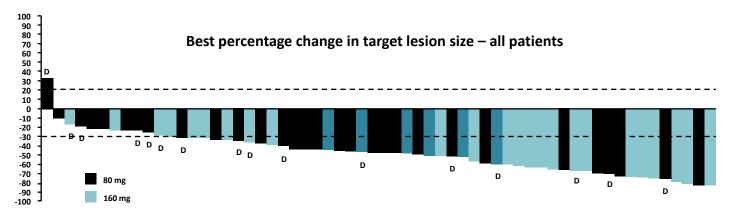
Stahel, et al. ECC 2015

AURA Phase I dose escalation / expansion global study design

First-line cohort objective

Safety and tolerability of AZD9291 (80 mg or 160 mg orally) as first-line therapy for patients with EGFRm positive NSCLC

Data cut-off August 1, 2015 Data from cohorts in grayed out boxes are not included in the analyses reported here ILD, interstitial lung disease

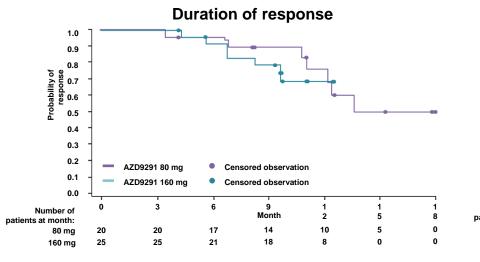

Key inclusion criteria:

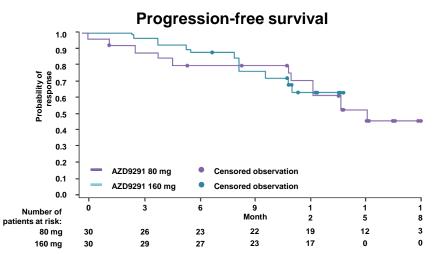
- •Locally advanced or metastatic NSCLC
- •No prior therapy for advanced disease
- •Measurable disease
- •Patients must have EGFRm positive tumor status from a local test

Key exclusion criteria:

- •Prior history of ILD
- •Symptomatic brain metastases

Tumor response in AZD9291 first-line cohorts by dose




	80 mg	160 mg	Total
	N=30	N=30	N=60
Confirmed objective response rate	67%	83%	75%
	(95% CI 47, 83)	(95% Cl 65, 94)	(95% Cl 62, 85)
Disease control rate	93%	100%	97%
	(95% CI, 78, 99)	(95% CI 88, 100)	(95% CI 89, 100)
Best objective response Complete response Partial response Stable disease Progressive disease	0 20 8 2	2* 23 5 0	2* 43 13 2

Population: evaluable for response, data cut-off August 1, 2015; RECIST 1.1, programmatically calculated from investigator-recorded tumor measurement CI, confidence interval; D, discontinued

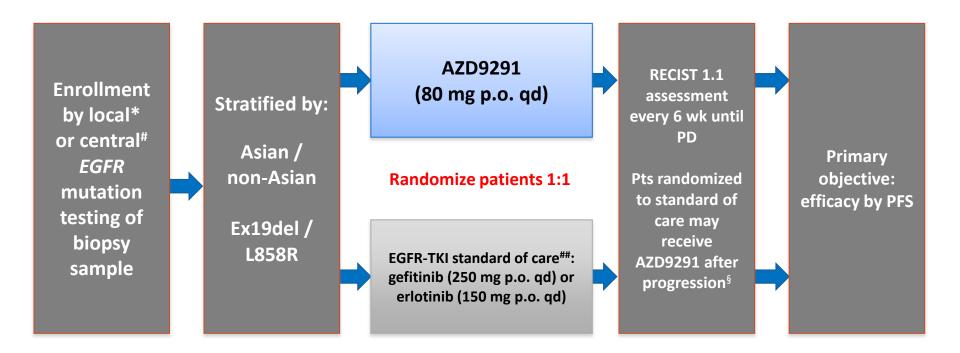
Ramalingam et al, WCLC 2015

DoR and PFS in AZD9291 first-line cohorts (investigator assessed)

	80 mg N=20	160 mg N=25	Total N=45		80 mg N=30	160 mg N=30	Total N=60
Median DoR,* months (95% CI)	13.6 (11.1, NC) Maturity: 35%	NC (9.7, NC) Maturity: 28%	NC (12.3, NC) Maturity: 31%	Median PFS, [‡] months (95% CI)	NC (12.3, NC) Maturity: 40%	NC (11.1, NC) Maturity: 30%	NC (13.7, NC) Maturity: 35%
Maximum DoR, months	18.0+	12.6+	18.0+	Maximum PFS, months	19.2+	13.8+	19.2+
Remaining in response, [†] % (95% CI) 9 months 12 months	89 (64, 97) 76 (46, 90)	78 (56, 90) 69 (45, 84)	83 (68, 92) 71 (53, 83)	Remaining alive and progression-free, [†] % (95% CI) 9 months 12 months	83 (64, 93) 75 (55, 87)	80 (60, 90) 69 (48, 82)	81 (69, 89) 72 (58, 82)

Population: all dosed patients, data cut-off August 1, 2015

Progression events that do not occur within 14 weeks of the last evaluable assessment (of first dose) are censored


*Duration of response is the time from first documentation of response until date of progression or death or last evaluable RECIST assessment for patients who do not progress;

*Calculated using the Kaplan-Meier technique; *Progression-free survival is the time from date of first dosing until the date of objective disease progression or death

DoR, duration of response; NC, not calculable; PFS, progression-free survival

Ramalingam et al, WCLC 2015

FLAURA Study Design

*With central laboratory assessment performed for sensitivity

[#]cobas™ EGFR Mutation Test (Roche Molecular Systems)

##Sites to select either gefitinib or erlotinib as the sole comparator prior to site initiation

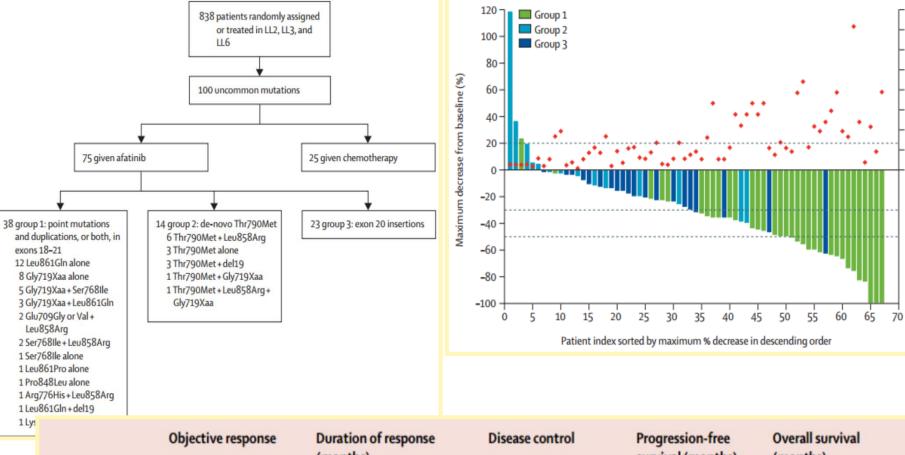
[§]Patients randomized to the standard of care treatment arm may receive open-label treatment with AZD9291 on central confirmation of both

objective disease progression and T790M positive tumor

OS, overall survival; PFS2, second progression-free survival (time from randomization to second progression); p.o., orally

Rare and Uncommon Mutations.....even an issue to define it properely

✓ Exon-19 del and L858R are described as classic *EGFR* mutations


✓ Uncommon mutations with known clinical significance: G719X, S768I, T790M, insertions in exon-20, and L861Q

✓ Rare *EGFR* mutations are considered all other *EGFR* mutations

IASLC-

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

16TH WORLD CONFERENCE ON LUNG CANCER SEPTEMBER 6-9, 2015 → DENVER, COLORADO, USA

	Objective response	(months)	Disease control	survival (months)	(months)	
Group 1 (n=38)*	27 (71·1%, 54·1-84·6)	11.1 (4.1-15.2)	32 (84.2%, 68.7-94.0)	10.7 (5.6-14.7)	19.4 (16.4-26.9)	
Group 2 (n=14)†	2 (14.3%, 1.8-42.8)	8.2 (4.1-12.4)	9 (64.3%, 35.1-87.2)	2.9 (1.2-8.3)	14.9 (8.1-24.9)	
Group 3 (n=23)‡	2 (8.7%, 1.1-28.0)	7.1 (4.2–10.1)	15 (65.2%, 42.7-83.6)	2.7 (1.8-4.2)	9.2 (4.1-14.2)	

J Yang et al Lancet Oncol 2015

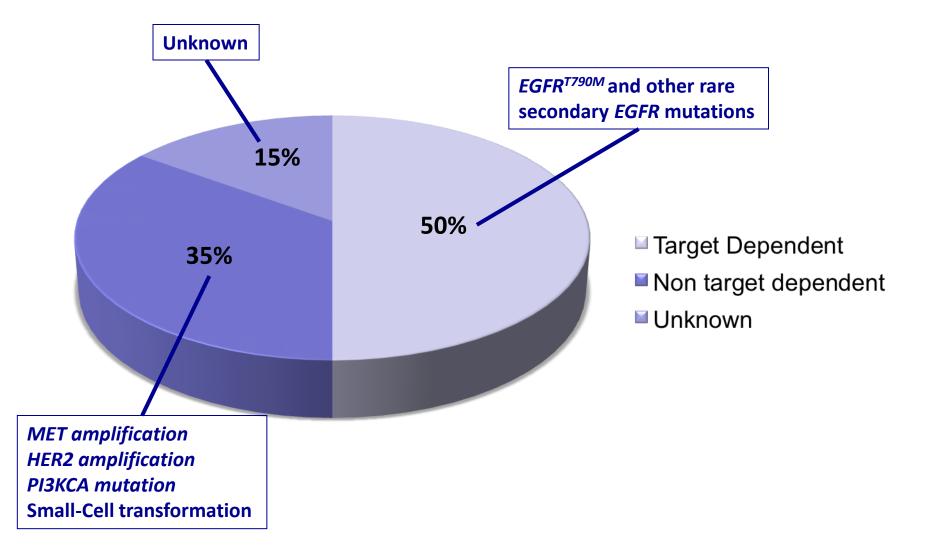
40

35

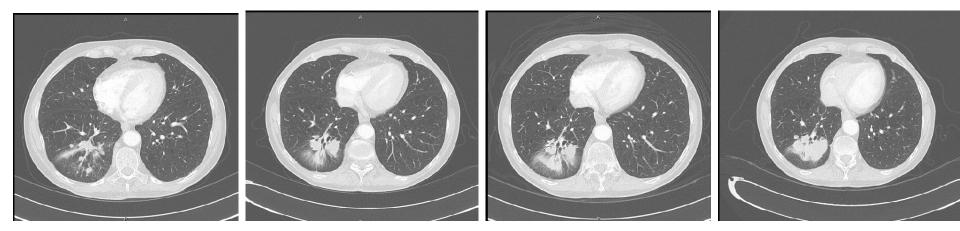
30

25

20 15

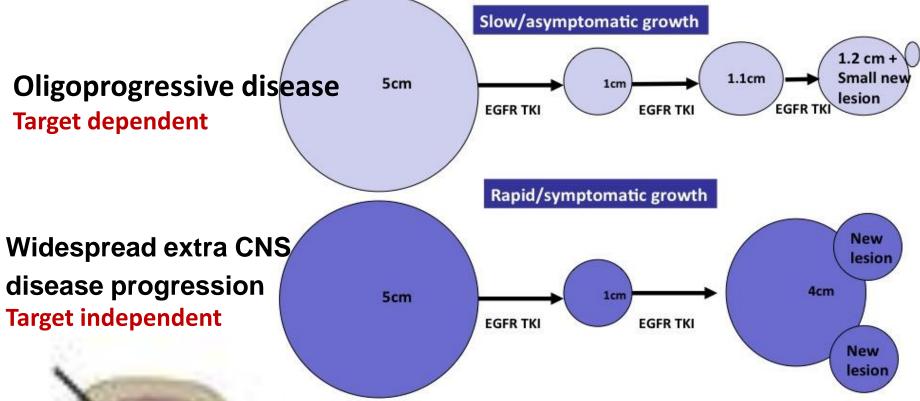

10

5


NSCLC EGFR-mutated

- First-line
 - In first line we have to always use an EGFR-TKI?
 - Which EGFR-TKI? First, second or third generation?
 - What about uncommon mutations?
- Mechanisms of resistance
 - Primary Resistance
 - Acquired Resistance
- PD1-axis and EGFR-TKIs

Mechanisms of acquired resistance to first-generation EGFR-TKIs



No cure with currently available targeted agents in other words the awareness that the result is at term!!!


Clinical presentations of acquired resistance

CNS progression

Local therapy and continuation of the same TKI vs change in systemic therapy

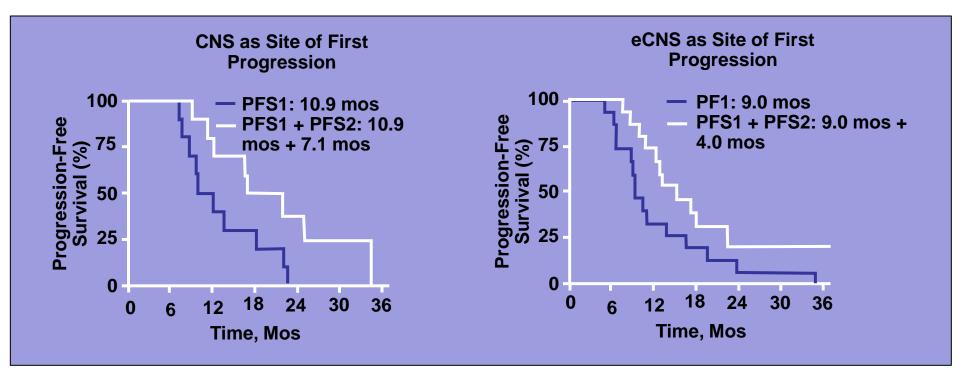
Studies investigating the role of continuing EGFR-TKIs beyond disease progression

Target Population, Type of trial	N° of pts	RR	PFS	OS
EGFR mut+, prospective single arm ph II	81	NA	3.7 mos	NA
EGFR mutant, prospective phIII	133 vs 132	31% vs 34%	5.4 mos 5.4 mos	14.8 mos 17.2 mos (p=0.29)*
	Type of trial EGFR mut+, prospective single arm ph II EGFR mutant, prospective	Type of trialof ptsEGFR mut+, prospective single arm ph II81EGFR mutant, prospective133 vs 132	Type of trial of pts EGFR mut+, 81 prospective single arm ph II 81 EGFR mutant, prospective 133 vs 132 31% vs 34%	Type of trialof ptsEGFR mut+, prospective single arm ph II81NA3.7 mosEGFR mutant, prospective133 vs 13231% vs 34% 5.4 mos

PFS=progression-free survival

NA=not available. *Immature data.

- Park K, Ahn M, Yu C, et al. 12230 * ASPIRATION: first-line erlotinib (E) until and beyond RECIST progression (PD) in Asian patients with EGFR mutation-positive NSCLC. *Ann Oncol* 2014; **25** (suppl 4): iv426–27.
- Soria J-C, Wu Y-L, Nakagawa K. Gefi tinib plus chemotherapy versus placebo plus chemotherapy in EGFR-mutation-positive non-small-cell lung cancer after progression on fi rst-line gefi tinib (IMPRESS): a phase 3 randomised trial. *Lancet Oncol* 2015;16: 990–98.


Suggested criteria for considering local Ablative therapy of oligoprogressive disease

- 1. *EGFR*-mutant metastatic non–small-cell lung cancer
- **2.EGFR-TKI is well tolerated**
- 3. Oligoprogressive disease on TKI therapy, defined as:
- •CNS progression without leptomeningeal disease amenable to WBRT, SRS, or surgical resection.

• Progression in ≤ 4 extra-CNS sites amenable to SBRT, XRT, or surgical resection.

Local Ablative Therapy in Acquired Resistance: University of Colorado Study

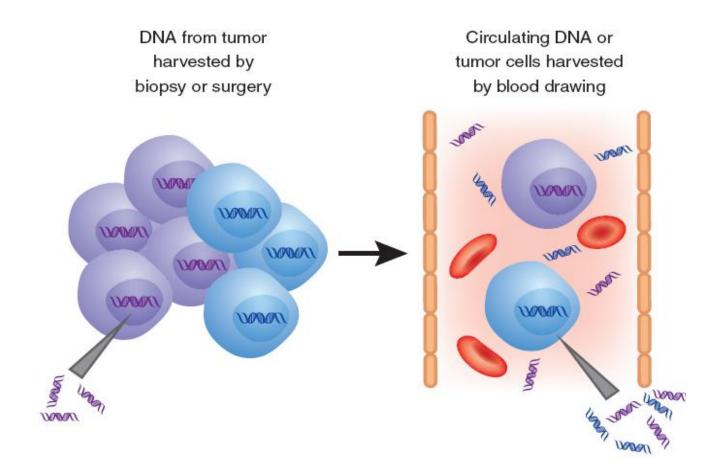
- 65 pts (38 ALK+, 27 EGFR mut+) of whom 51 (28 ALK, 23 EGFR) progressed
- 25 (49%) with CNS (no LMC) or \leq 4 extracranial sites of progression

Weickhardt AJ, et al. J Thorac Oncol. 2012;7:1807-1814.

Metastatic non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

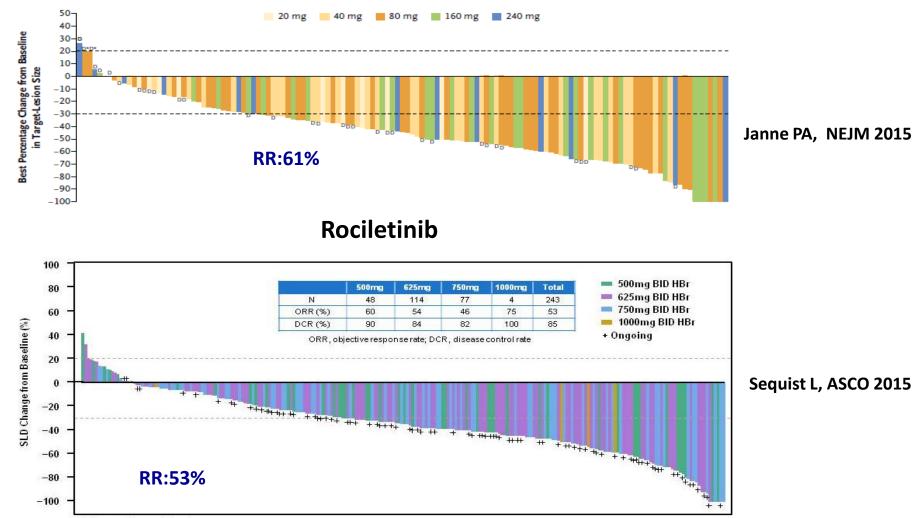
S. Peters¹, A.A. Adjei², C. Gridelli³, M. Reck⁴, K. Kerr⁵ & E. Felip⁶ on behalf of the ESMO Guidelines Working Group^{*}

¹Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; ²Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA; ³Department of Medical Oncology, 'S.G. Moscati' Hospital, Avellino, Italy; ⁴Department of Thoracic Oncology, Hospital Grosshansdorf, Grosshansdorf, Germany; ⁵Aberdeen Royal Infirmary, Aberdeen, UK; ⁶Vall d'Hebron University Hospital, Barcelona, Spain


Re-biopsy at disease

progression should be considered [7].

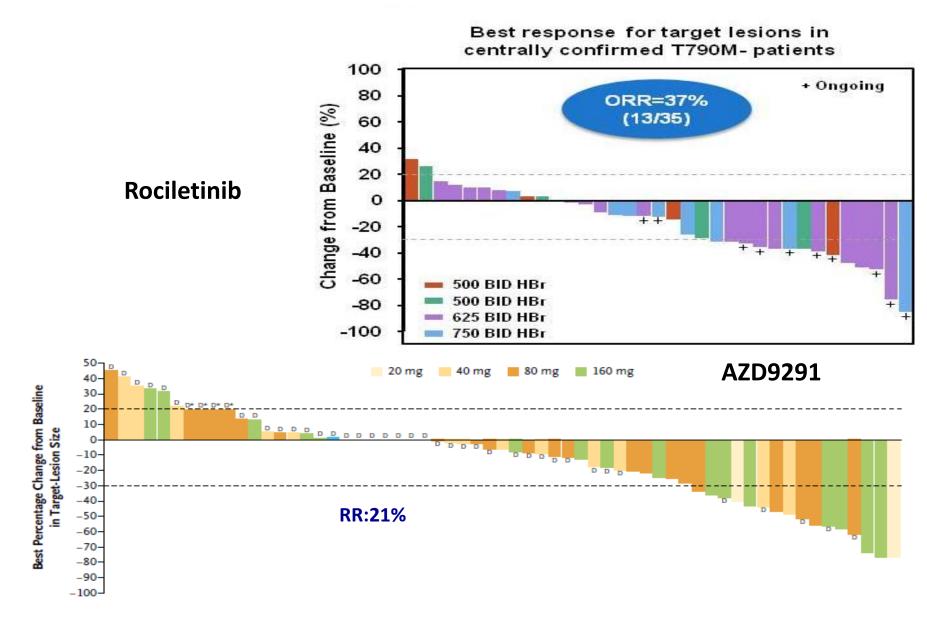
Diagnosis (and tests) do not end at the time of diagnosis


Different sources of tumor DNA

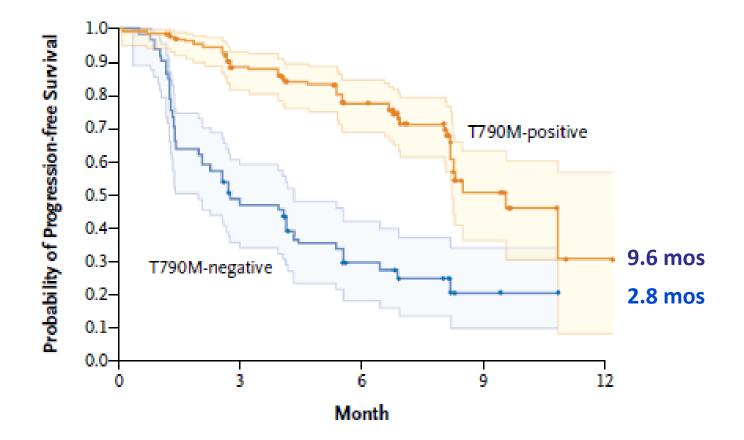
Fleischacker & Schmidt Nat Med 2008

AZD9291 and Rociletinib in patients EGFR^{T790M+}

AZD9291

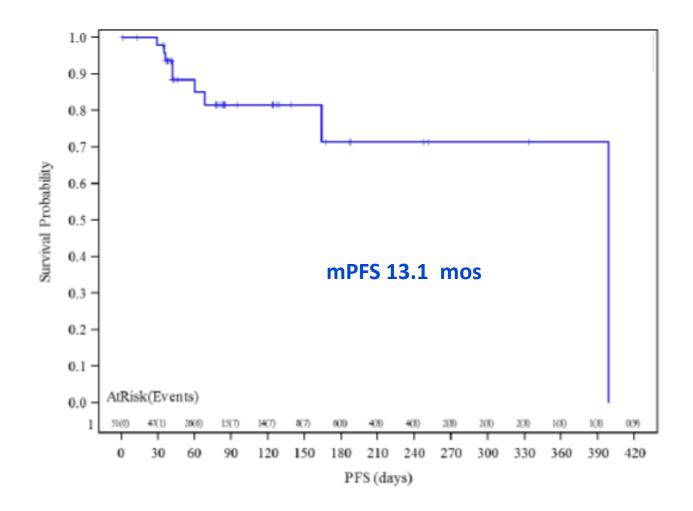


SLD, sum of longest diameters


Trials with third-generation EGFR TKIs

	Phase	Target population	N° of pts	RR %	DCR%	PFS	OS
AZD9291	1/2 (AURA) (NCT018026 32)	<i>EGFR</i> mutant, progressed on previous EGFR TKI or systemic treatment		51 61 T790M+ 21 T790M-	84; 95 61	NA; 9·6 mos; 2·8	NA
Rociletinib		<i>EGFR</i> mutant, received previous EGFR TKI	179; 56 [±]	46 67 T790M+ 36 [±] T790M-	84; 89;± NA	NA; 10∙4 mos; [±] 7∙5 mos [±]	NA
HM61713	1 (NCT015881 45)	<i>EGFR</i> mutant, progressed on CHT and EGFR TKI	118; 48	21.7 29.2 11.8	67·5 75 [±] 55.9	NA; 4·3 mos;2·3 mos [‡]	NA
ASP8273 ⁸¹	1 (NCT021138 13)	<i>EGFR</i> mutant, received previous EGFR TKI	31; 13 [±]	42%; 78% [±]	NA	NA	NA

Rociletinib and AZD9291 in patients EGFR^{T790M-}



PFS with AZD9291 according to EGFR T790M status

Janne PA, et al. NEJM 2015

Estimated mPFS in patients with confirmed EGFR T790M+ Rociletanib

Sequist LV, et al. NEJM 2015

	Phase	Primary endpoint	Status	Т790М	Key features
AZD9291					
AURA-2 (NCT02094261)	2	ORR	Ongoing but not recruiting	Positive	Failed EGFR TKI; <i>EGFR</i> mut+
AURA-3 (NCT02151981)	3	PFS	Recruiting	Positive	Failed first-line EGFR TKI; <i>EGFR</i> mut+;vs platinum-based CHT
FLAURA (NCT02296125)	3	PFS	Recruiting	Pos/neg	First-line; <i>EGFR</i> mut+;vs gefitinib/erlotinib
NCT02143466	1	Safety and tolerability	Recruiting	Pos/neg	Failed EGFR TKI; <i>EGFR</i> mut+; AZD9291 with either MEDI4736 or AZD6094 or selumetinib

Rociletanib

	Phase	Primary endpoint	Status	Т790М	Key features
	2	PFS	Recruiting	Pos/neg	First-line, randomised; <i>EGFR</i> mut+vs erlotinib
TIGER-2 (NCT02147990)	2	Objective response rate	Recruiting	Positive	Single group; EGFR mutant;failed first-line EGFR TKI
TIGER-3 (NCT02322281)	3	PFS	Not yet recruiting	Pos/neg	Failed EGFR TKI and platinum doublet CHT <i>EGFR</i> mutant;vs: single-agent CHT

Treatment-related AEs occurring in patients receiving Rociletinib or AZD9291

AZD9291

Rociletinib

Event	20 mg (N=21)	40 mg (N=58)	80 mg (N=90)	160 mg (N=63)	240 mg (N=21)	Total (N=253)
			number of pati	ients (percent)	8 Ø	
Diarrhea						
Any grade	5 (24)	24 (41)	30 (33)	43 (68)	16 (76)	118 (47)
Grade 3–5	0	1 (2)	1 (1)	1 (2)	1 (5)	4 (2)
Rashes and acne‡						
Any grade	5 (24)	13 (22)	29 (32)	40 (63)	15 (71)	102 (40)
Grade 3–5	0	0	0	2 (3)	0	2 (1)
Nausea						
Any grade	3 (14)	10 (17)	16 (18)	19 (30)	7 (33)	55 (22)
Grade 3–5	1 (5)	0	0	0	0	1 (<0.5
Decreased appetite						
Any grade	7 (33)	11 (19)	14 (16)	16 (25)	6 (29)	54 (21)
Grade 3–5	1 (5)	0	1 (1)	0	0	2 (1)
Dry skin						
Any grade	2 (10)	9 (16)	10 (11)	25 (40)	5 (24)	51 (20)
Grade 3–5	0	0	0	0	0	0
Pruritus						
Any grade	2 (10)	11 (19)	15 (17)	12 (19)	7 (33)	47 (19)
Grade 3–5	0	0	0	0	0	0

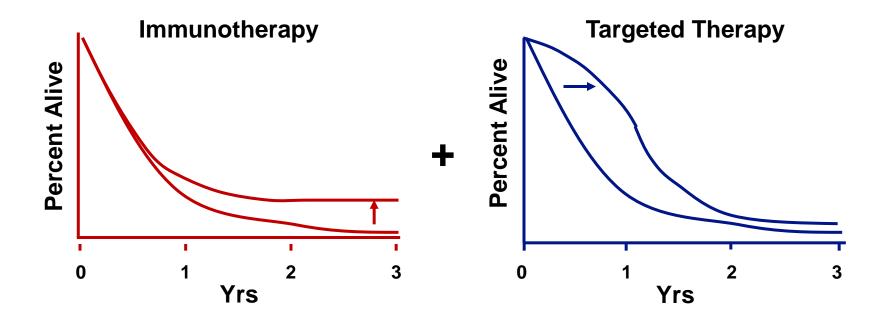
Event	Any Grade	Grade 1	Grade 2	Grade 3
		number	(percent)	
Hyperglycemia†	43 (47)	14 (15)	9 (10)	20 (22)
Nausea	32 (35)	16 (17)	14 (15)	2 (2)
Fatigue	22 (24)	9 (10)	9 (10)	4 (4)
Diarrhea	20 (22)	16 (17)	4 (4)	0
Decreased appetite	18 (20)	10 (11)	7 (8)	1 (1)
Vomiting	13 (14)	9 (10)	2 (2)	2 (2)
QTc prolongation	11 (12)	3 (3)	3 (3)	5 (5)
Muscle spasms	10 (11)	9 (10)	0	1 (1)

Sequist L, et al. NEJM 2015 Janne PA, et al. NEJM 2015

NSCLC EGFR-mutated

• First-line

In first line we have to always use an EGFR-TKI?


• Which EGFR-TKI? First, second or third generation?

What about uncommon mutations?

- Mechanisms of resistance
 - Primary Resistance
 - Acquired Resistance
- PD1-axis and EGFR-TKIs

PD1-axis and EGFR-TKIs

- Preclinical data showed that activation of the PD-1 pathway contributed to immune evasion in EGFR-driven lung cancers.
- Phase 1 trials combining EGFR TKIs (1st, 2nd and third generation) with immunotherapies are ongoing, including the following:
 - nivolumab (NCT01454102);
 - pembrolizumab (NCT02039674);
 - MPDL3280A (N CT02013219).

Conclusions

- EGFR mutations are validated biomarkers for NSCLC
- An EGFR-TKI is the standard first-line therapy forEGFR mutated patients
- Erlotinib, gefitinib and afatinib equally effective, with different toxicity profile
- Rociletinib and AZD9291 effective in patients with acquired resistance to first-generation EGFR-TKIs

Thank you for your attention!

rita.chiari@ospedale.perugia.it