

REGIONE DELVENETO

Progetto <u>CANOA</u> <u>CARCINOMA</u> <u>MAMMARIO:</u> QUALI NOVITÀ PER IL 2015?

"Saper leggere" uno studio <mark>clin</mark>ico per migliorare la pratica clinica

Coordinatori scientifici: Stefania Gori Giovanni L. Pappagallo

La predizione del rischio basata sui tests di espressione genica

PierFranco Conte, Maria Vittoria Dieci

Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche Università di Padova IOV – Istituto Oncologico Veneto I.R.C.C.S.

Ospedaletto di Pescantina (VR) 10-11 aprile 2015 Villa Quaranta Park Hotel

Precision Medicine: Prognostic and Predictive Factors

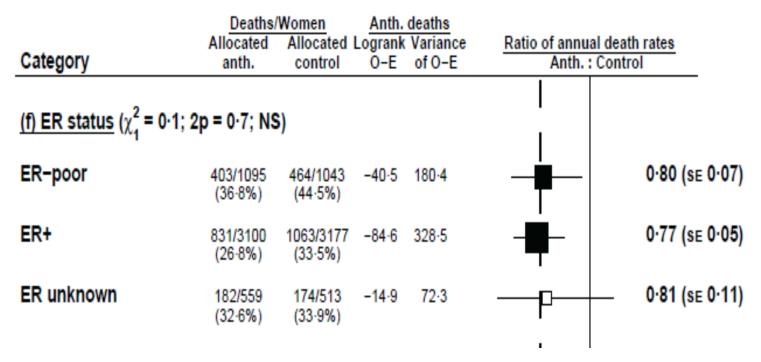
	Definition	Aim
Prog Fact	Prognosis: g the future is used e can modify the o	ess unless ^{sary} utcome
Predictive Factors	Provide information on probability of benefit or toxicity from a specific therapy	To spare ineffective treatments

Adjuvant Systemic Therapy for EBC Summary of the Evidence

Subgroup	Treatment	Comparator	Risk reduction for recurrence
	TAM for 5y	No TAM	39%
HR+	AI (upfront or sequence)	5y TAM	23-29%
	Extended adjuvant ET	5y TAM	15-43%
	Polychemotherapy	No chemo	~ 24%
All	Anthra regimens	CMF	20%
	Anthra+Taxane regimens	Anthra	12%
HER2+	Trastuzumab + Chemo	Chemo	40%

Precision Medicine: Prognostic and Predictive Factors

Precision Medicine: Prognostic and Predictive Factors


Prediction: therapies are useless unless we know who to treat			
Prognostic Factors	Provide information on outcome regardless of therapy	To spare unnecessary treatments	
Predictive Factors	Provide information on probability of benefit or toxicity from a specific therapy	To spare ineffective treatments	

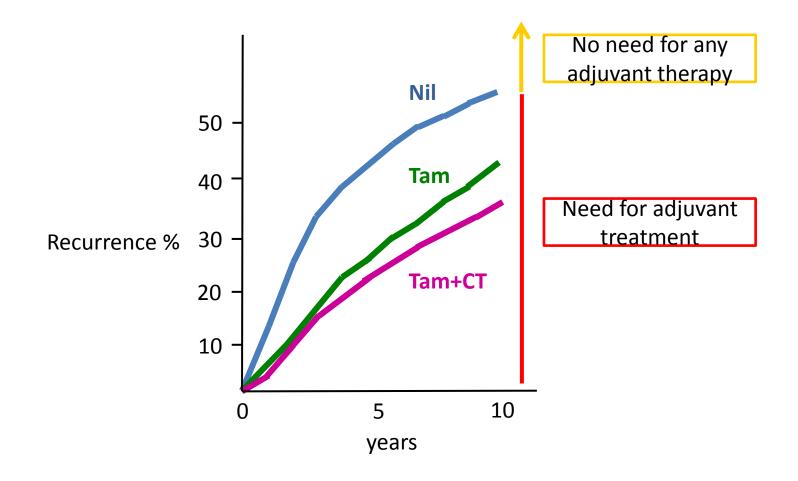
Number of patients with EBC needed to treat with Adjuvant **Therapy to prevent ONE recurrence**

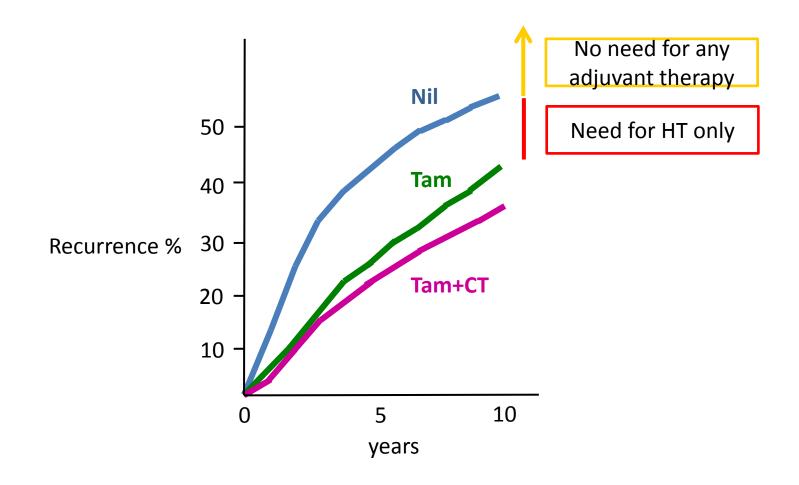
Comparison	Absolute reduction in Recurrence %	NNT
Tamoxifen <i>vs.</i> Nil ^	11.8	8
Aromatase Inhibitors vs TAM*	3- 5.3	19 - 33
Aromatase Inhibitors vs Nil°	~ 16	~ 6
Polychemo vs. Nil (< 50)^	12.3	8
Polychemo vs. Nil (50+)^	4.2	23
Anthra vs CMF [^]	4.0	25
Taxanes vs. Anthra§	~ 5	20
3 rd gen taxane regimen vs Nil°	~ 23	~ 4
ChemoRx + Trastuzumab vs ChemoRx	6.3 - 18	6 - 15
ChemoRx + Trastuzumab vs Nil+	13 - 35	2-3

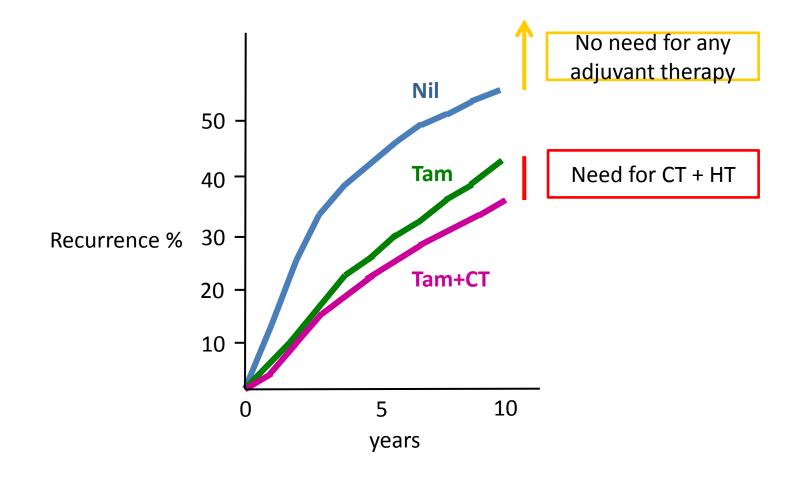
^ 15 yrs,EBCTCG 2005
* 3-6 y from RCTs, postmenopause
* 10 yrs, estimated from Adjuvant!
§ 10 yrs, Peto, SABCS 2007
* 3 yrs, estimated from RCTs

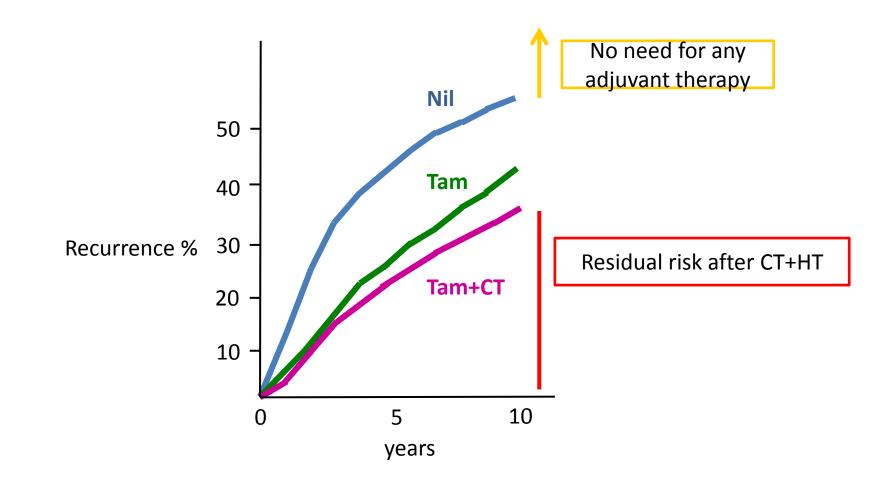
Breast cancer mortality ratio: any anthracycline-based regimen (eg, standard 4AC) vs no adjuvant chemotherapy, by ER STATUS and subsets of ER+

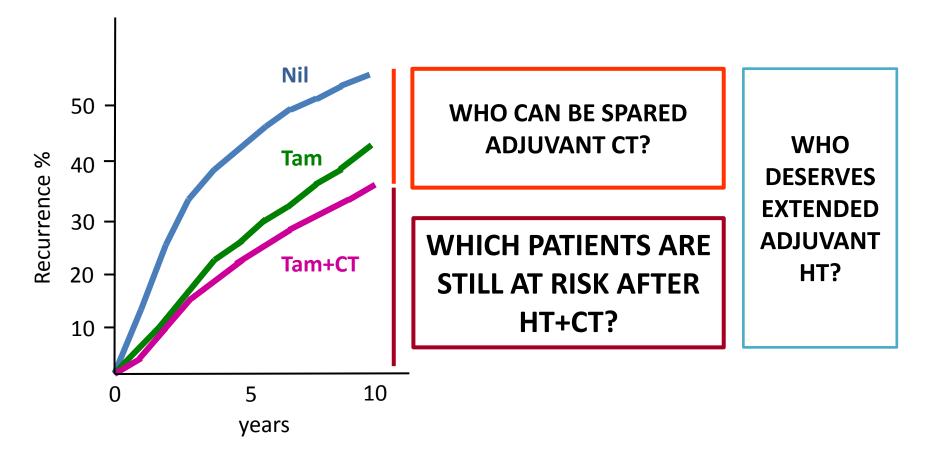
Adjuvant Therapy for EBC: the Price of Success

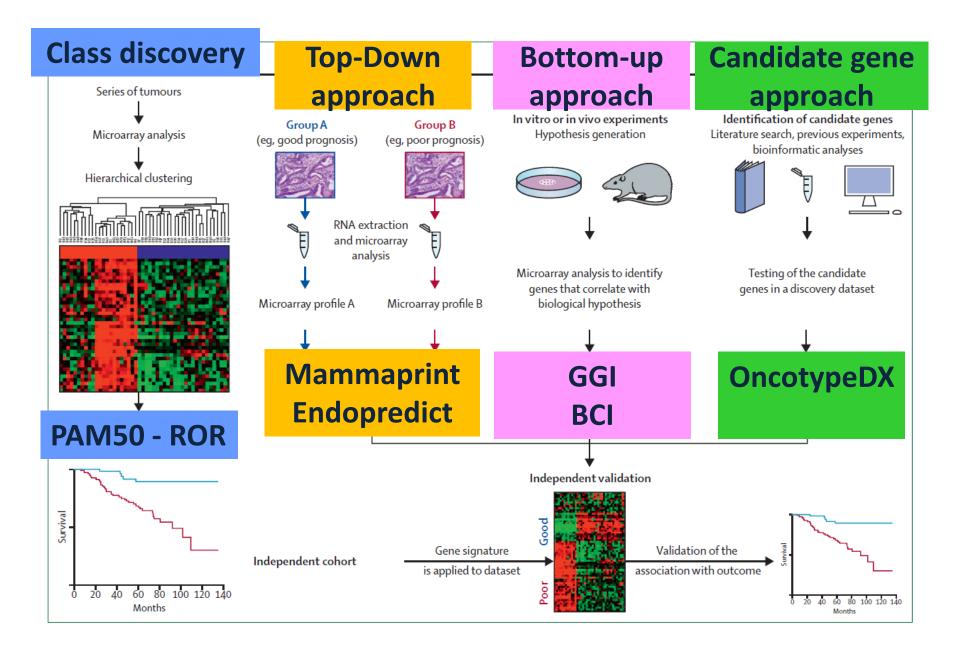

- More effective adjuvant ET:
 Als > TAM
 10y ET > 5y TAM
- Polychemotherapy:
 effective independently from HR status
- Improved prognosis over time: more early stages multiple effective therapies


Precision Medicine: Prognostic and Predictive Factors


th Progrossic Factors	Prediction: erapies are useless we know who to t outcome regardless of therapy			
Pre Face Negative Prediction: Good enough to predict who will NOT respond to ET and antiHER2 therapy. No good predictor for chemotherapy.				

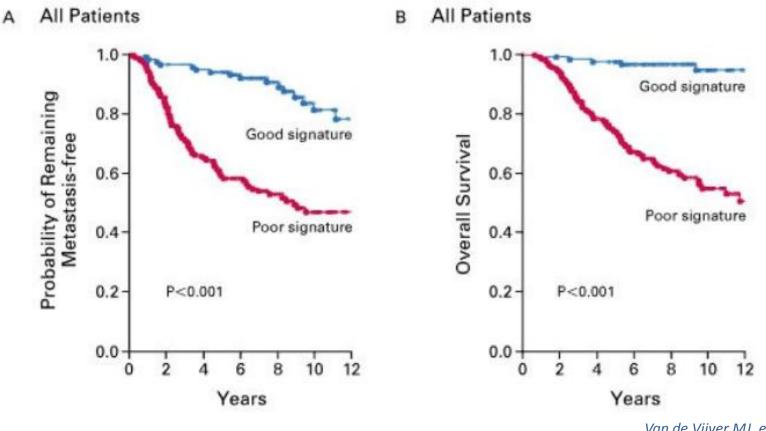

HR+ EBC: the quest for precision cancer medicine


prognosticators of distant relapses predictors of chemotherapy benefit



Personalised Cancer Medicine

- Understand the biology of each specific tumor
 - Dissect tumor heterogeneity
 - Determine pathways driving cancer growth and treatment resistance
 - Identify potential targets
- Assess the risk of recurrence
- Assess treatment benefit
 - Identify patients more likely to benefit from toxic treatments
 - Identify patients who may be spared unnecessary toxicity
 - Select the most appropriate treatment


Reis-Filho J, Lancet 2011

First-generation prognostic signatures: common features

- ER-related and proliferation genes are the two most powerful molecular processes associated with outcome
 - ER has a broad transcriptional footprint and cell proliferation requires the expression of hundreds of genes → large number of minimally overlapping models
- Relatively good overall concordance, however substantial discordances (20 to 30%) in risk assignment at the individual case level may be observed across multiple models
- Correlation with chemosensitivity (high proliferation)
- No molecular marker associated with stage is included
 - T and N provide INDEPENDENT prognostic information
- Prognostic information above the IHC-derived information are limited
 - in particular when IHC features are evaluated in a centralized and standardized fashion

Mammaprint: independent cohort

295 consecutive patients with stage I or II breast cancer, < 53 years old; 151 had lymph-node-negative disease, and 144 had lymph-node-positive disease

Van de Vijver MJ, et al, NEJM 347:1999-2009, 2002

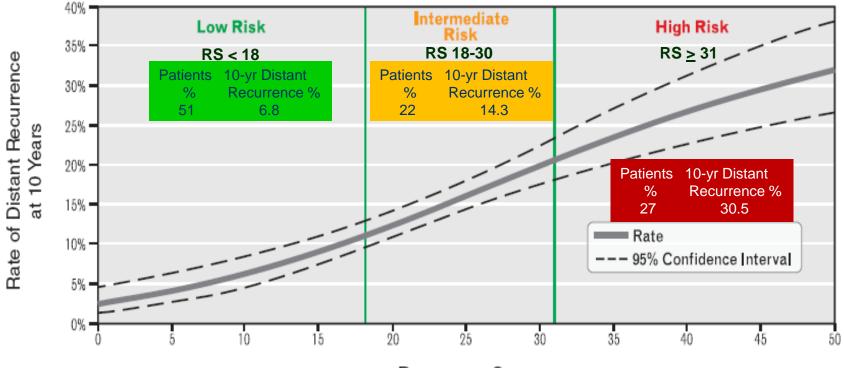
Mammaprint

CONs

- General limitations of first-generation signatures can be applied

- Previously: fresh or frozen samples required

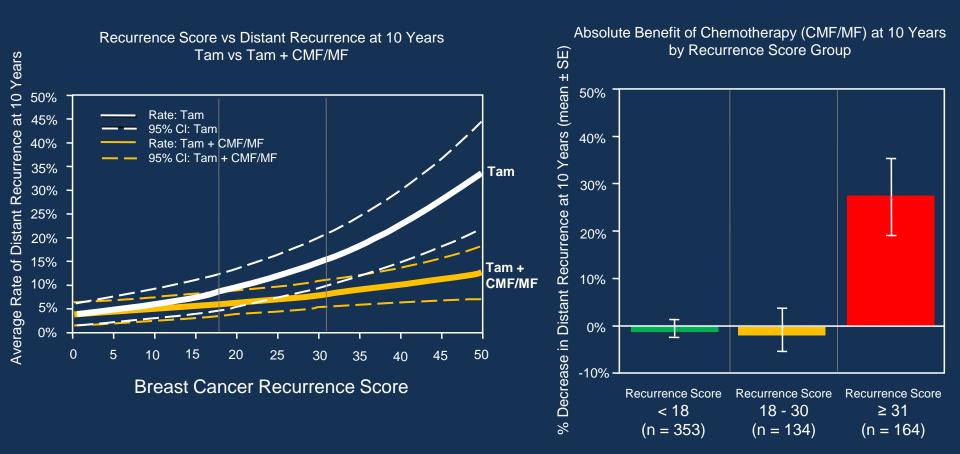
PROs


- Dichotomous, no «grey zone» (does it truely reflect the continuum of biology?)

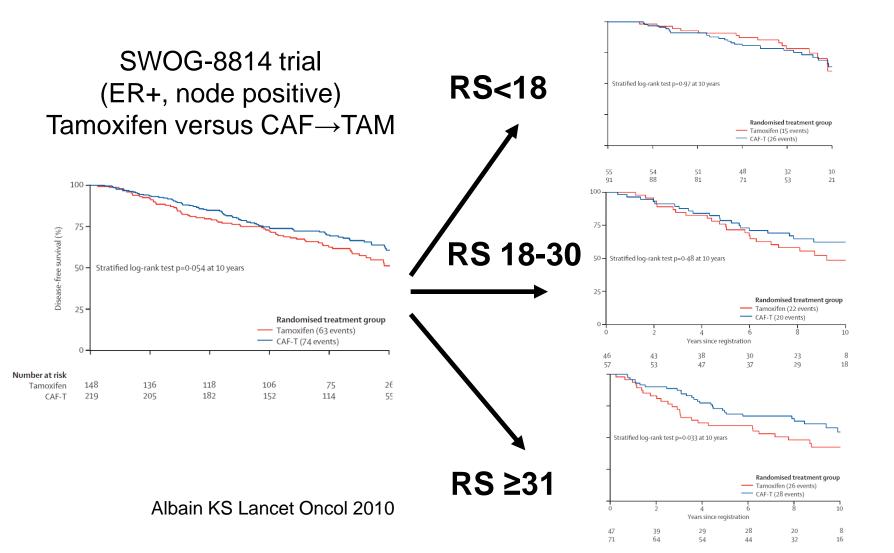
- Recent versions of the test allow the use of FFPE samples

- Prognostic value
 - Is the risk of relapse low enough to avoid chemo?
- Prediction of chemotherapy benefit
- Recurrence score vs «the rest of the world»
 - Clinico-pathologic factors
 - IHC4 score
- Decision Impact Studies
 - The ongoing Breast-DX Italian study

Recurrence Score as Continuous Predictor



Recurrence Score


Paik S, NEJM 351(27):2817, 2004

High Recurrence Score[®] Disease Is Chemo-sensitive Whereas Low Recurrence Score Disease is Not (NSABP B-20)

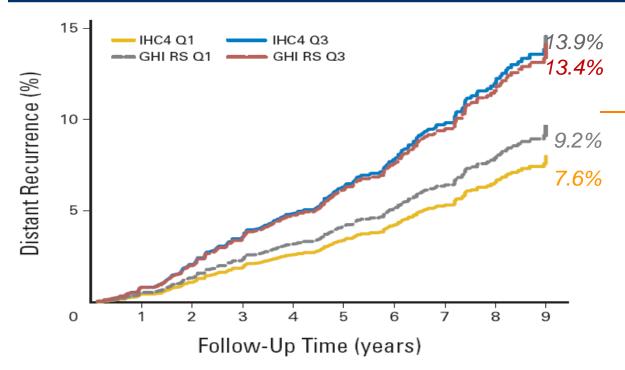
Node Negative, ER-Positive Breast Cancer Chemotherapy Benefit

Recurrence Score: prediction of chemotherapy benefit in ER+ N+ patients

Anatomy and Biology: two complementary sides of breast cancer prognostication

	NSABP B-14 (n = 647)		TransATAC (n = 1,088)	
Covariate	Hazard Ratio	Wald Test	Hazard Ratio	Wald Test
RS linear component	5.344*	< .001	2.766*	.02
RS nonlinear component		.004		.37
Tumor poorly differentiated	2.845	.008†	2.477	.012†
Tumor moderately differentiated	1.223	.50†	1.625	.14†
Tumor size	1.266‡	.006	1.72‡	< .001
Age at surgery	0.892§	.22	0.933§	.53
Treatment (anastrozole v tamoxifen) —	—	0.886	.48
1-3 positive nodes (N1-3)	_		1.429	.083
4+ positive nodes (N4+)	_		4.548	< .001

 Pathologic variables (i.e. grade, tumor size and nodal status) retained an independent prognostic value which is not captured by the molecular signature


Which are the practical implications?

Graphical Printout RSPC (Recurrence Score - Pathology-Clinical) RSPC Assessment of Node Negative, ER Positive Distant Recurrence Risk User Input Oncotype DX[®] Breast Cancer Assay Recurrence Score[®]: 22 Planned Hormonal Treatment: Aromatase Inhibitor Patient age at surgery: 60 Tumor size (cm): 1.5 Tumor grade (differentiation): Grade 2 (Moderate) Results Risk of distant recurrence at 10 years: 9% (6%-11%)

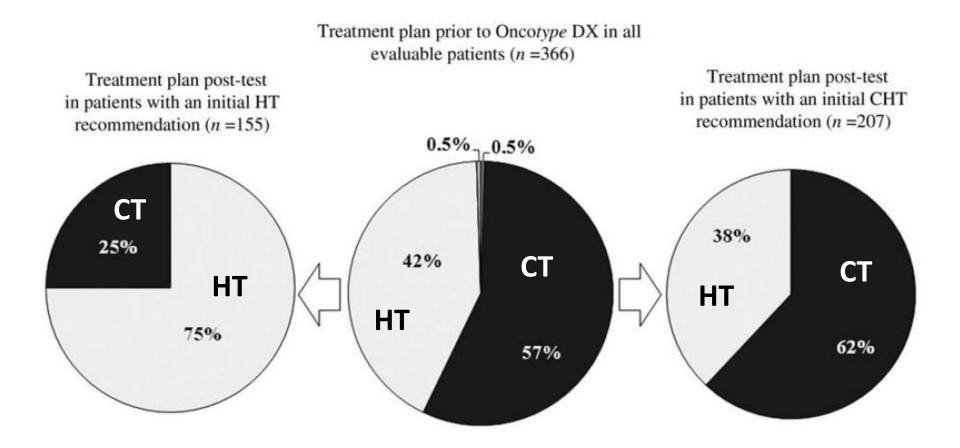
Graphical Printout	RSPC (Recurrence Score - Pathology-Clinical)			
RSPC Assessment of Node Negative, ER Positive Distant Recurrence Risk				
User Input				
Onco <i>type</i> DX [®] Breast Cance	r Assay Recurrence Score®:	22		
Planned Hormonal Treatmer	nt:	Aromatase Inhibitor		
Patient age at surgery:		50		
Tumor size (cm):		1.5		
Tumor grade (differentiation):		Grade 3 (Poor)		
Results				
Risk of distant recurrence at	t 10 years:	18% (13%-24%)		

T, N and G need to be accurately determined!!!

IHC4 score vs GHI-RS

Predicted TTDR for a <a>65ys patient with node-neg, 1-2cm poorly differentiated tumor receiving anastrozole.

Kaplan Meyer curves for either the 25° or 75° percentile of each score .


The amount of prognostic information provided by the IHC4 score in addition to the clinical score is similar to that provided by the GHI-RS. Using both scores together, in addition to clinical score, provided only slightly more information than using either of the scores individually added to clinical variables.

BUT:

methodological issues, Ki67 reproducibility, no prediction on chemo efficacy

Cuzick J et al, JCO 2011

The German Decision Impact study

Relative reduction of actual CT use: 29% for N0 and 38% for N1-3 patients

Eiermann, Ann Oncol 2012

REGIONE DELVENETO

Breast-DX Italy

Impact of the Onco*type* DX[®] Breast Cancer Assay on Resources Optimization and Treatment Decisions for Women with Estrogen Receptor-Positive, Node-Negative and Node-Positive Breast Carcinoma: a prospective Italian multicenter study.

PROGRAMMA PER LA RICERCA INNOVAZIONE E HTA (PRIHTA) – REGIONE DEL VENETO

Coordinatore: Istituto Oncologico Veneto IRCCS, Padova **PI:** Prof. PierFranco Conte

Breast-DX Italy

- Prospective, multicenter study (Rete Oncologica Veneta)
- To evaluate the impact of Onco*type* DX[®] on the decision making processes of physicians in recommending adjuvant therapy and on resources optimization in an Italian setting

Both NO and N1 patients will be included.

OBSERVATIONAL PHASE: ALL CONSECUTIVE ER+, HER2-, N0-3, T1-3 PATIENTS

-Data collection

-Physician's perception of Oncotype DX utility

Low-Risk at least 4 of the following: •G1 •T1a-b	CLINICAL PHASE: SUBGROUP OF PTS FROM THE OBSERVATIONAL PHASE	High-Risk at least 4 of the following: •G3 •T>2
■Ki67 <15%	-Pre-test Physician decision	•1 <u>≥</u> 2 •Ki67 >30%
■N negative	-Test	N pos
■ER >80%	-Post-test Physician decision + post-test	•ER <30%
EXCLUDED	perception of utility -Treatment started	EXCLUDED

Oncotype DX Request for pts not eligible for the Clinical Phase will not be processed by GH.

Future directions:

- Mindact, TAILORx and RxPONDER will establish the CLINICAL UTILITY of GEPs
- **Predictive role of first-generation prognostic signatures** in patients treated with modern chemotherapy regimens
- Second generation prognostic signatures
 - developped in specific breast cancer subtypes
 - prognosis of ER- and/or highly proliferating ER+ BC patients (i.e. immune modules)
- Residual risk after adjuvant treatment
 - Patients at high risk after 5 years of adjuvant endocrine treatment to offer extended endocrine therapy
 - Patients at high risk after chemotherapy+endocrine treatment to offer clinical trials with new agents