

QUALI NOVITA' PER IL 2016?

"Saper leggere" uno studio clinico per migliorare la pratica clinica

2016: Novità in ambito di Terapia Antiemetica nel Carcinoma Mammario

Emilio Bria

Oncologia Medica, Dipartimento di Medicina, Università di Verona, Azienda Ospedaliera Universitaria Integrata Verona

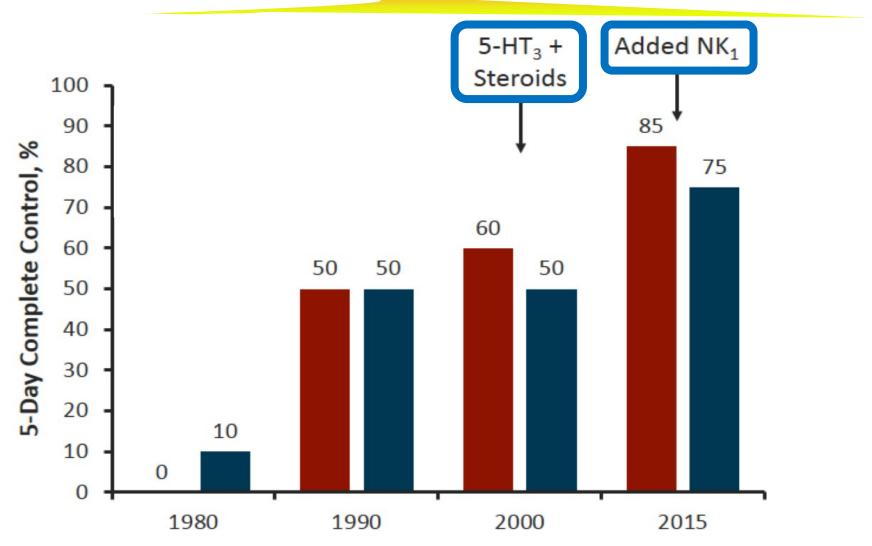
emilio.bria@univr.it

Disclosures

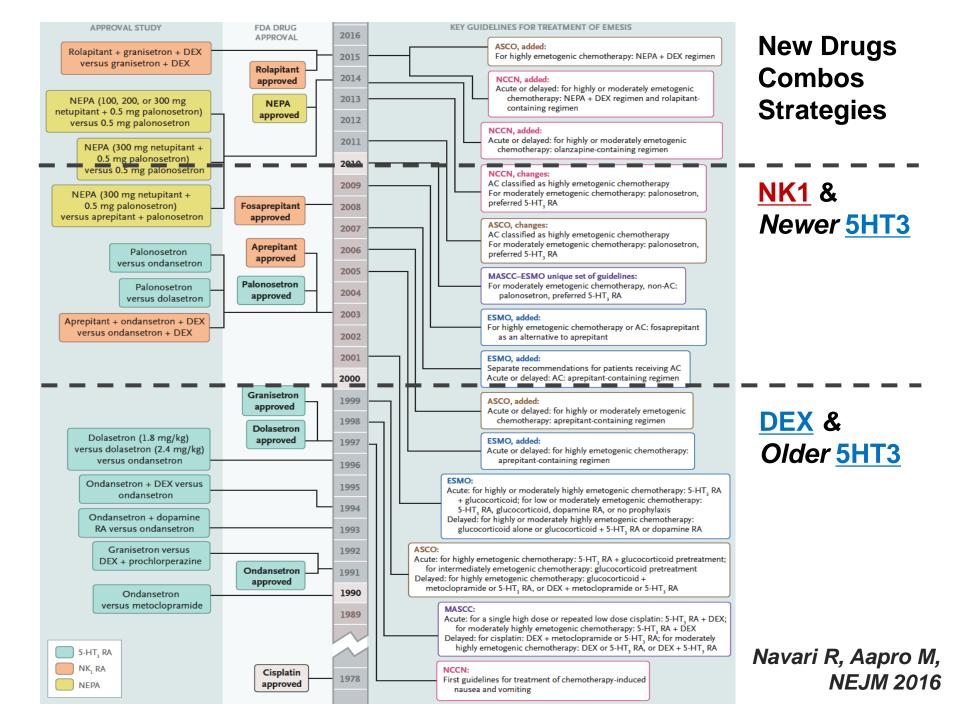
- Advisory Boards/Honoraria/Speakers' fee/Consultant for:
 - Astra-Zeneca, Celgene, Pfizer, Helsinn, MSD, Eli-Lilly, BMS, Novartis, Roche
- Research Support / Grants from:
 - A.I.R.C. (Associazione Italiana Ricerca sul Cancro)
 - I.A.S.L.C. (International Association for the Study of Lung Cancer)
 - Fondazione Cariverona

THE MULTIPLE ROLES FOR 'SUPPORTIVE CARE' IN CANCER

- 1. Reduce or eliminate associated symptoms and side-effects
- 2. Preserve or improve quality of life
- 3. Permit safe out-patient treatment
- 4. Enhance the use of the most effective antineoplastic agents



Patients' Top Concerns


Ranking	1983 ¹	1993 ²	1995 ³	1999 4	2003 ⁵
1	Vomiting	Nausea	Nausea	Nausea	Fatigue
2	Nausea	Fatigue	Hair Loss	Hair Loss	Nausea
3	Hair Loss	Hair Loss	Vomiting	Fatigue	Sleep Problems
4	Anxiety	Family Issues	Fatigue	Vomiting	Weight Loss
5	Treatment duration	Vomiting	Injection Fear	Taste Issues	Hair Loss


- 1. Coates Eur J Cancer 1983
- 2. Griffin, Ann Oncol 1996
- 3. de Boer-Dennert M, Br J Cancer 1997
- 4. Lindley Cancer Pract 1999
- 5. Hofman M, Cancer 2004

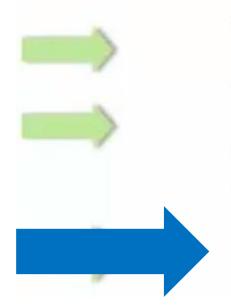
Improved Ability to Control Chemotherapy Induced Nausea & Vomiting (CINV)

Gralla R, Medscape Feb 2016

"THREE OUT OF FOUR DOCTORS RECOMMEND ..."

EMETOGENIC POTENTIAL of I.V. Agents (MASCC / ASCO / ESMO Guidelines)

Chemotherapy	Risk	Examples
High	> 90%	Cisplatin, streptozocin, carmustine, dacarbazine
Moderate 30-9		Carboplatin, cyclophosphamide, doxorubicin, ifosfamide, oxaliplatin, irinotecan, alemtuzumab, azacitidine, bendamustine
Low	10-30%	Etoposide, gemcitabine, 5-FU, docetaxel, paclitaxel, cetuximab, catumaxomab, panitumumab
Minimal	< 10%	Vinca alkaloids, bleomycin, bevacizumab


Basch E et al. J Clin Oncol. 2911; 29:4198-4198 (ASCO Guideline). Roila, F. et al Ann Oncol. 2010;21:v232–v243.

Courtesy of Jordan J, 2014

EMETOGENIC POTENTIAL of Agentsis evolving!

Forty new agents identified

The reported incidence of vomiting varied across studies for many agents, but there was adequate evidence to allow 37 new agents to be classified according to emetogenic risk:

No highly emetogenic agents identified

6 moderately emetogenic:

IV : peg-lipo doxorubicin, romidepsin, temozolomide, trabectedin

PO: bosutinib, crizotinib

31 agents were identified as low (23) or minimally (8) emetogenic

2013: MASCC & ESMO Guidelines

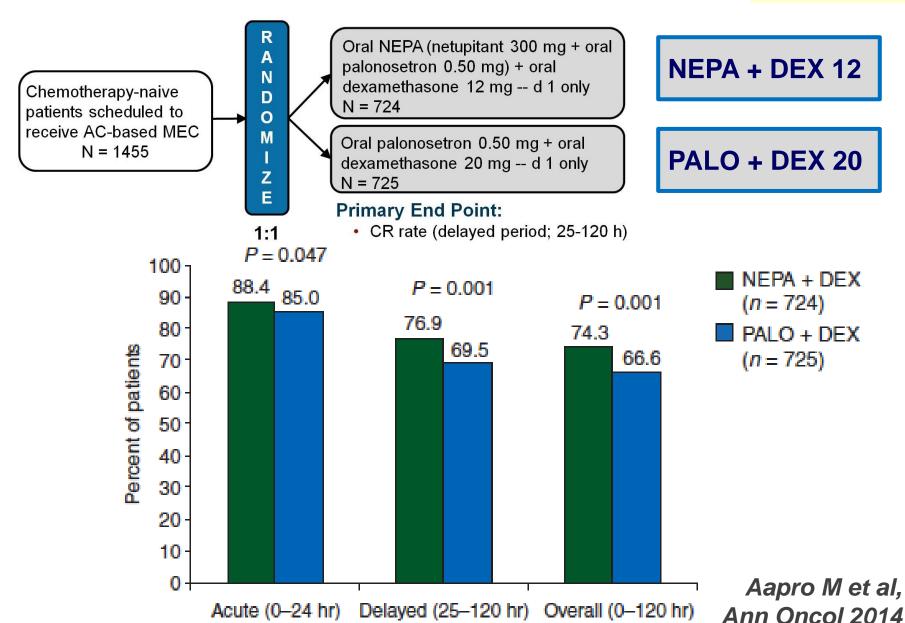
HEC

a. Hesketh PJ, et al. *J Clin Oncol.* 2003;21:4112-4119; b. Poli-Bigeli S, et al *Cancer.* 2003;97:3090-3098.

AC

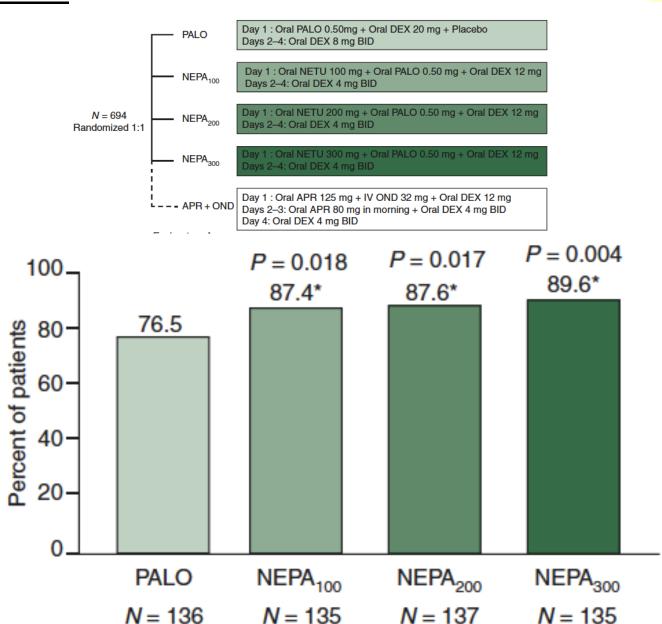
Warr DG, et al. *J Clin Oncol.* 2005; 23:2822-2830.

Non-AC MEC

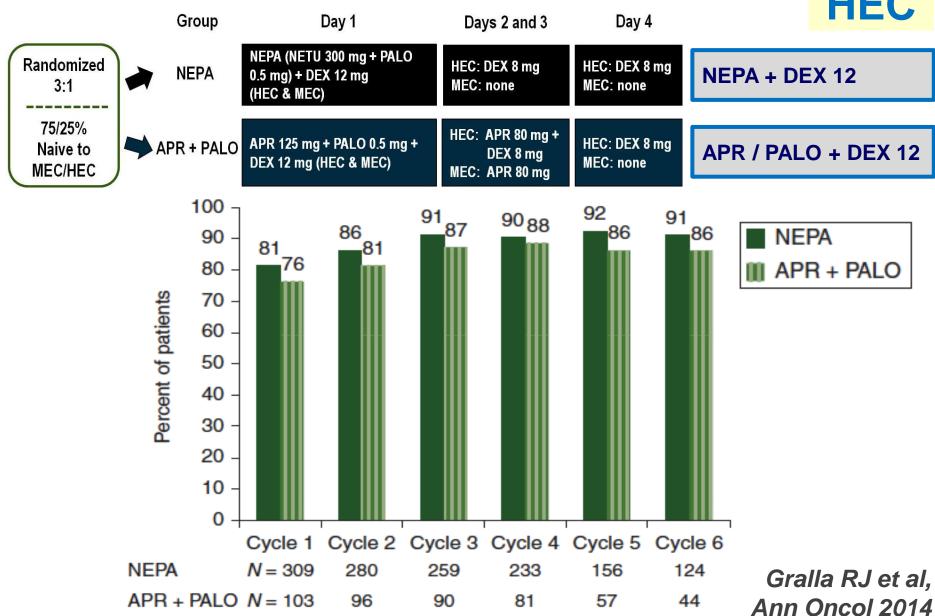

a. Schwartzberg L, et al. *Support Care Cancer.* 2013 Oct 19. [Epub ahead of print]; b. Gralla R, et al. *Ann Oncol.* 2003;14:1570-1577; c. Eisenberg P, et al. *Cancer.* 2003;98:2473-2482; d. Aapro MS, et al. *Ann Oncol.* 2006;17:1441-1449; e. Saito M, et al. *Lancet Oncol.* 2009;10:115-124.

2016: ASCO & NCCN Guidelines

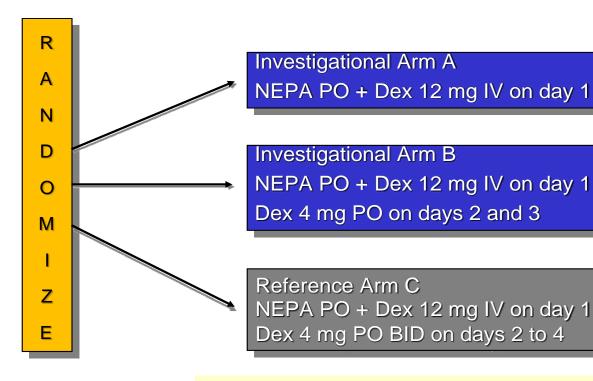
ASCO guidelines ⁶		
High (including AC)	5-HT ₃ -receptor antagonist, dexamethasone, and aprepitant	Dexamethasone and aprepitant
	NEPA and dexamethasone	Dexamethasone
Moderate	Either palonosetron and dexamethasone or 5-HT ₃ -receptor antagonist, dexamethasone, and aprepitant	5-HT ₃ -receptor antagonist, dexamethasone, or aprepitant
Low	Dexamethasone	_
NCCN guidelines ¹¹		
High (including AC)	5-HT ₃ -receptor antagonist and dexamethasone, plus one of the following agents: aprepitant, fosaprepitant, or rolapitant∫	Aprepitant plus dexamethasone¶
	NEPA and dexamethasone∫	Dexamethasone
	Olanzapine, palonosetron, and dexamethasone	Olanzapine
Moderate	5-HT ₃ —receptor antagonist and dexamethasone, with or without aprepitant, fosaprepitant, or rolapitant	5-HT ₃ –receptor antagonist, dexamethasone, or aprepitant with or without dexamethasone**
	NEPA and dexamethasone∫	Dexamethasone may be used
	Olanzapine, palonosetron, and dexamethasone	Olanzapine
Low	Dexamethasone∫, metoclopramide∫, prochlorper- azine∫, or 5-HT₃-receptor antagonist∫ (ondan- setron, granisetron, or dolasetron)	


NEPA + DEX vs. PALO + DEX

NEPA + DEX vs. PALO + DEX



Hesketh P et al, Ann Oncol 2014

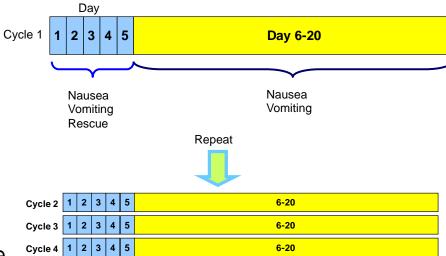

NEPA + DEX vs. APR/PALO + DEX

NEPA w/o DEX (<u>DEX-Sparing Strategy</u>) for CIS-based CINV in NSCLC

Phase III, randomized, multicenter, openlabel, parallelgroup, activecomparator, threearm, non-inferiority study

Sponsor	Consorzio ONCOTECH
Principal Investigator	Emilio Bria, Verona
Study Protocol	Luigi Celio, Milan
Cancer-associated weight loss study	Augusto Caraceni, Milan
Statistician	Erminio Bonizzoni, Milan

- Arms A, B and C: NEPA will be given 60 min before chemotherapy on day 1 Dex will be given 30 min before chemotherapy on day 1
- Arm B: Dex will be given in the morning on days 2 and 3
- Arm C: Dex will be given in the morning and in the evening on days 2 to 4



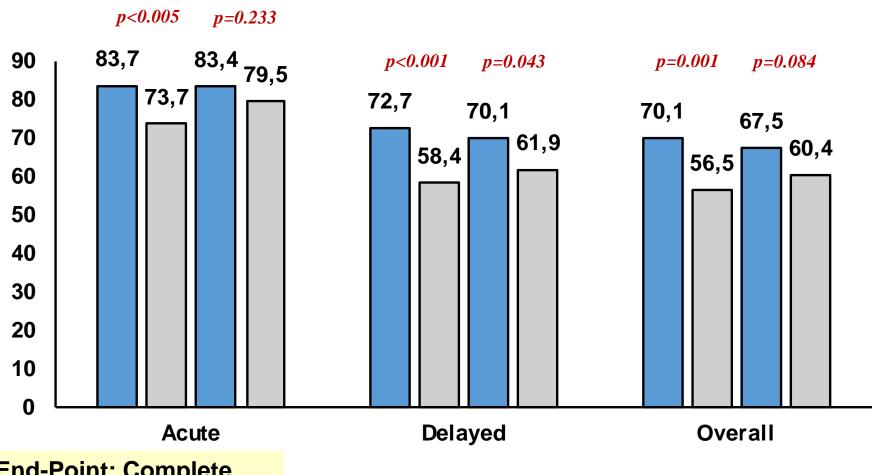
GIM 15: NEPA plus DEX for AC-based regimens

Study coordinator: <u>Dr Michele De Laurentiis</u>

- Open-label, 1 arm trial (non-comparative)
- AC-based chemotherapy multicycles (up to a maximum of 4 cycles): the time between two consecutive cycles is 21 days
- Prevention with NEPA: one dose on Day 1 before each CT administration
- Dexamethasone IV, 12 mg, on Day 1
- Conducted in 35 centres
- Number of patients: 150, to have 135 evaluable (10% lost to follow up), according to a Fleming design)
- Enrolment time: 12 months

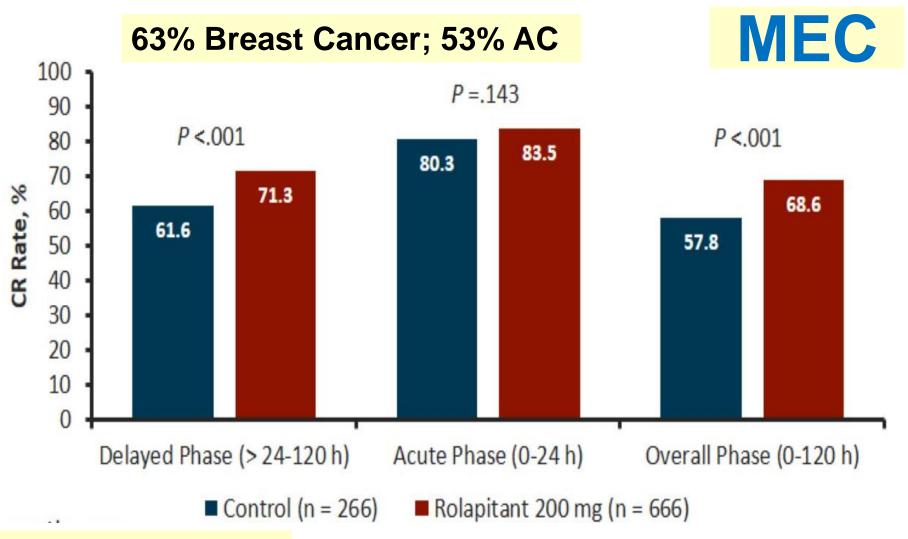
To evaluate whether the efficacy on CINV of a single dose NEPA (co-administered with dexamethasone) on Day 1 of each AC-based chemotherapy is maintained throughout the duration of the whole chemotherapy treatment (up to 4 cycles)

Safety evaluation throughout the whole observation period


NB: Advanced/Metastatic Breast Cancer EXCLUDED

ROLA + GRAN/DEX vs. GRAN/DEX

2 RCTs: 526 & 544 pts

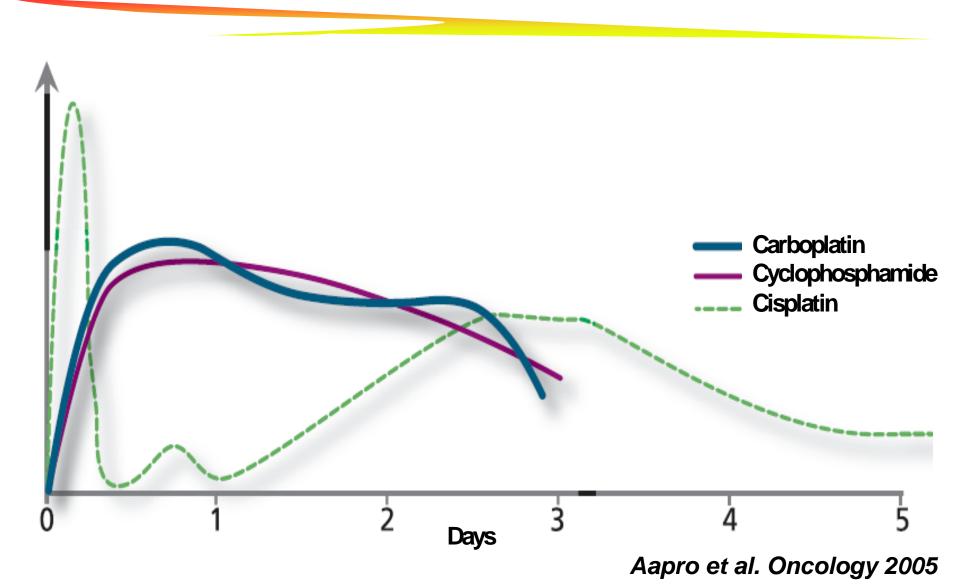


End-Point: Complete Response (%) at cycle 1

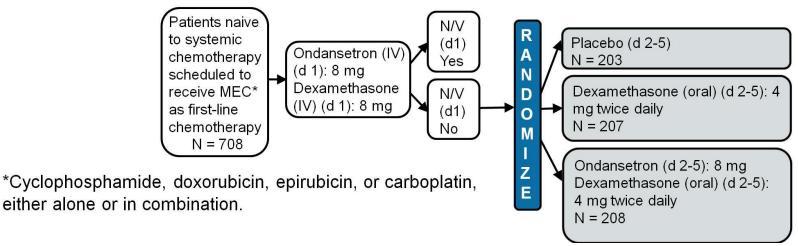
■ROLA ■Control

Jordan K, Ann Oncol 2015

ROLA + GRAN/DEX vs. GRAN/DEX



End-Point: Complete Response (%) at cycle 1


Schwarzberg LS et al, Lancet Oncol 2015

DELAYED EMESIS

- Do we use Agents in these Classes Optimally? -

The Italian Group for Antiemetic Research 2000

	Placebo	Dexamethsone (d 2-5)	Ondansetron + Dexamethasone (d 2-5)	P Value for Overall Comparison Between 3 Groups	
No emesis (delayed period)	87.3%	92.3%	95.2%	.02	
No moderate or severe nausea (delayed period)	81.8%	89.4%	93.3% Italian Group for Antiemetic R	.002 Research. <i>N Engl J Med.</i> 2000;342	:1554-1

Conclusion: Dexamethasone alone is an optimal approach for the prevention of CINV during the delayed period in this patient population.

559.

Issues for Delayed Emesis Control

The 'Dex-Sparing' Strategy

Author (year)	N	Type of chemo	Anti-emetic regimens	Overall CR
Aapro (2010)	300	AC	Palo + Dex d1 vs. Palo + Dex d1-3	53.6% <i>VS.</i> 53.7%
Celio (2011)	332	MEC	Palo + Dex d1 vs. Palo + Dex d1-3	67.5% <i>VS.</i> 71.1%
Komatsu (2015)	305	nonAC- MEC	Palo + Dex d1 vs. Palo + Dex d1-3	68.2% <i>VS.</i> 64.7%

All non inferiority trials; Primary endpoint: Complete Response

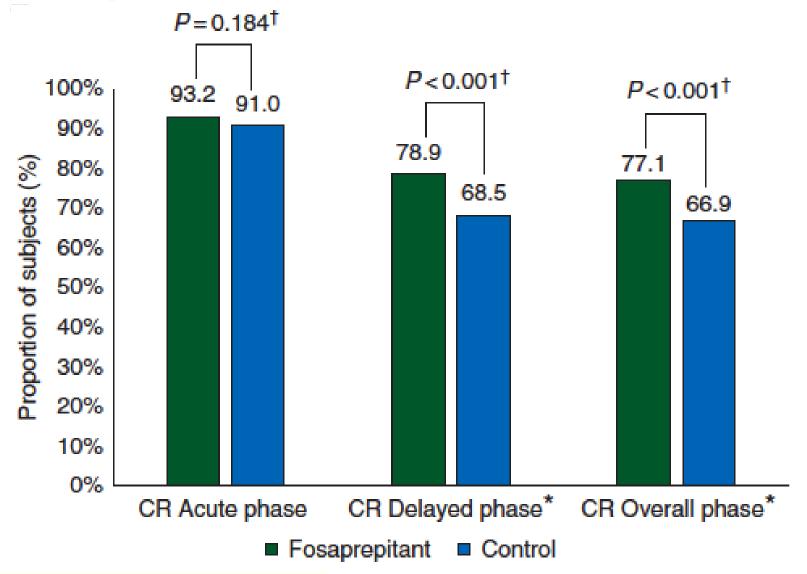
Aapro M et al. Ann Oncol 2010 Celio L et al. Support Care Cancer 2011 Komatsu Y et al. Cancer Sci 2015

Issues for Delayed Emesis Control

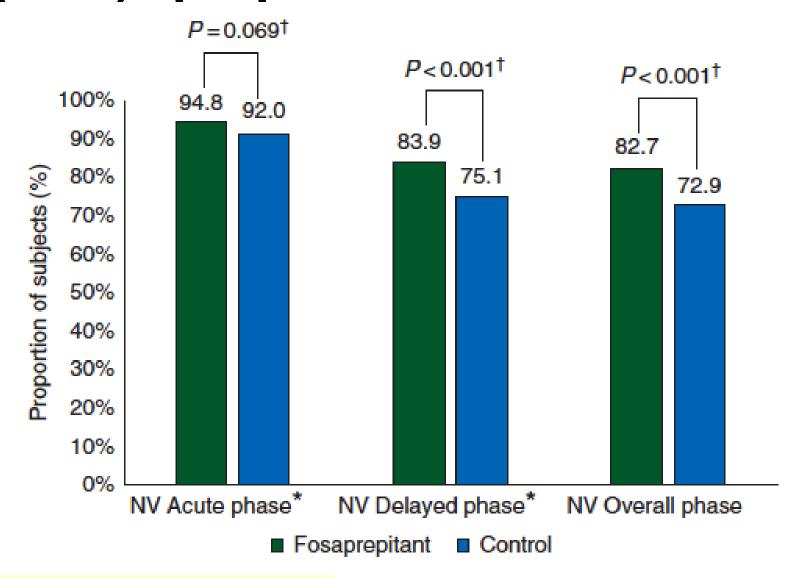
What is the best Strategy?

Day 1 (before chemo): PALO i.v. 0.25 + DEX (8 or 12) mg + APR 125 mg

Author (year)	N	Type of chemo	Anti-emetic regimens	Overall CR
Roila (2014)	508	AC	<u>DEX</u> <i>vs.</i> APR	79.5% <i>VS.</i> 79.5%
Roila (2015)	332	HEC	APR + DEX vs. <u>MTC</u> + DEX	80.3% VS. 82.5%


Both superiority (DEX > APR and APR > MTC);

Primary endpoint: Complete Response

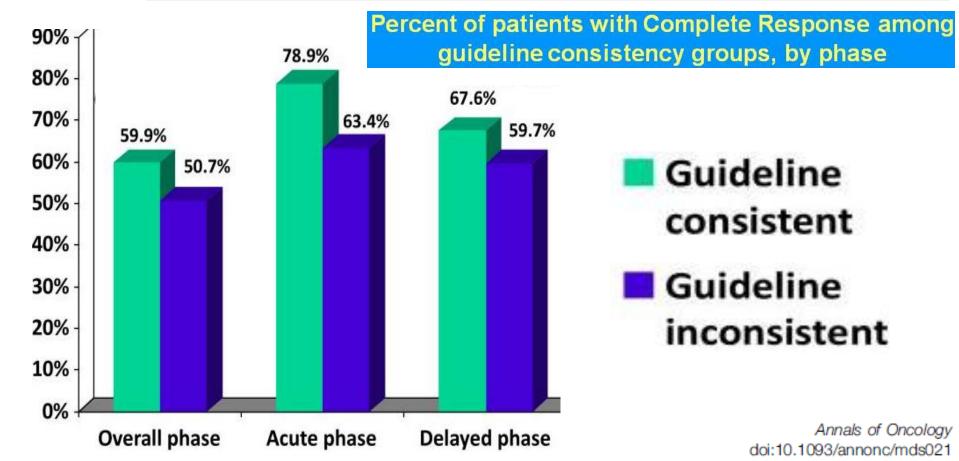

(FOS)Aprepitant for nonAC-MEC

Daniman	Study	Day 1	Day 2	Day 3
Regimen	Medication	Dose	Dose	Dose
	Fosaprepitant	150 mg IV	None	None
Fosaprepitant	Ondansetron 8 mg	1 capsule 30-60 min prior to MEC; 1 capsule 8 h after first dose	1 placebo capsule q12h	1 placebo capsule q12h
	Dexamethasone 12 mg ^{a,b}	3 capsules of 4 mg each + 2 placebo capsules ^b	None	None
	Placebo	150 mL normal saline IV	None	None
Control	Ondansetron 8 mg	1 capsule 30-60 min prior to MEC; 1 capsule 8 h after first dose	1 capsule q12h	1 capsule q12h
	Dexamethasone 20 mg ^a	5 capsules of 4 mg each	None	None

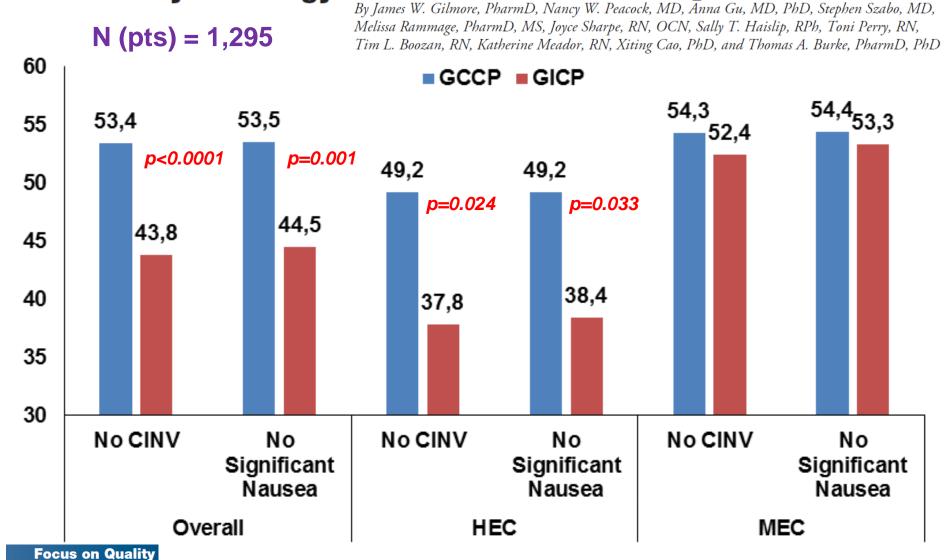
(FOS)Aprepitant for nonAC-MEC

(FOS)Aprepitant for nonAC-MEC

Do Guidelines Improve Emetic Control?


- Adherence to Guidelines -

- Adherence to (MASCC) guidelines significantly improves CINV control
- Utilization effects of adopting MASCC guidelines:
 - Marked decrease of 5-HT3 in the delayed emesis period
 - Increased use of corticosteroids
 - Increased use of aprepitant
 - Estimated equal or decreased total costs
 - PEER Investigators, Ann Oncol 2012
 - INSPIRE Investigators, J Oncol Practice 2013
 - Molassotis et al, JPSM 2013
 - O'Kane et al. Proc. MASCC 2009
 - De Moor et al. Proc. ASCO 2013


The effect of guideline-consistent antiemetic therapy on chemotherapy-induced nausea and vomiting (CINV): the Pan European Emesis Registry (PEER) M. Aaprolis A. Molassiotis² M. Dicato³ J. Pelá

M. Aapro^{1*}, A. Molassiotis², M. Dicato³, I. Peláez⁴, Á. Rodríguez-Lescure⁵, D. Pastorelli⁶, L. Ma⁷, T. Burke⁷, A. Gu⁷, P. Gascon⁸ & F. Roila⁹; on behalf of the PEER investigators

Chemotherapy	Acute phase (day 1) GCCP	Delayed phase (days 2-4) GCCP
HEC	Corticosteroid + NK1-RA + 5HT3-RAª	Corticosteroid days 2-4 + NK1-RA days 2-3
Female AC	Corticosteroid + NK1-RA + 5HT3-RA ^a	Corticosteroid +/or NK1-RA days 2-3°
MEC	Corticosteroid + 5HT3-RA ^{a,b}	Corticosteroid +/or 5HT3-RA days 2-3c

Antiemetic Guideline Consistency and Incidence of Chemotherapy-Induced Nausea and Vomiting in US Community Oncology Practice: INSPIRE Study

Original Contribution

jop.ascopubs.org

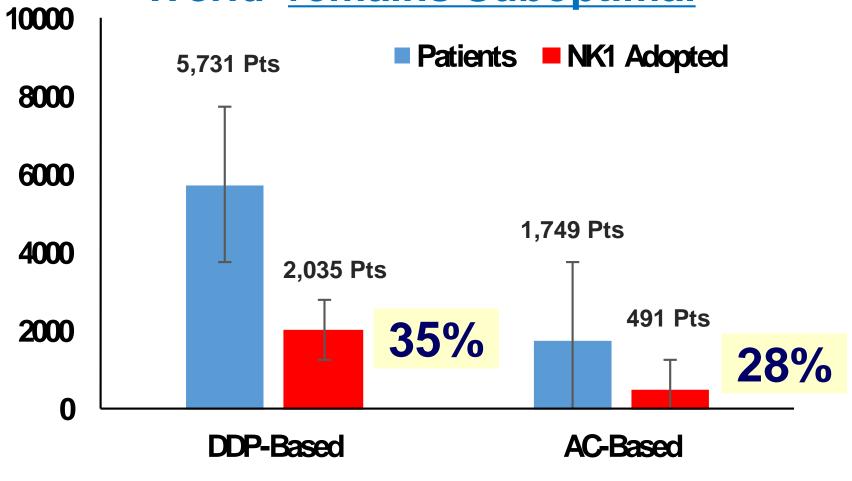
Evaluation of Risk Factors Predicting

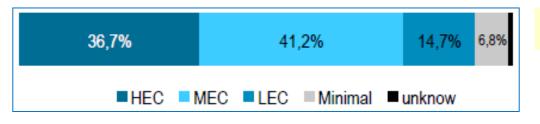
Chemotherapy-Related Nausea and Vomiting:

Results From a European Prospective Observational Study

Alexander Molassiotis, RN, PhD, Matti Aapro, MD, Mario Dicato, MD, FRCP, Pere Gascon, MD, PhD, Sylvia A. Novoa, MD, Nicolas Isambert, MD, Thomas A. Burke, PhD, Anna Gu, MD, PhD, and Fausto Roila, MD

N (pts) = 991

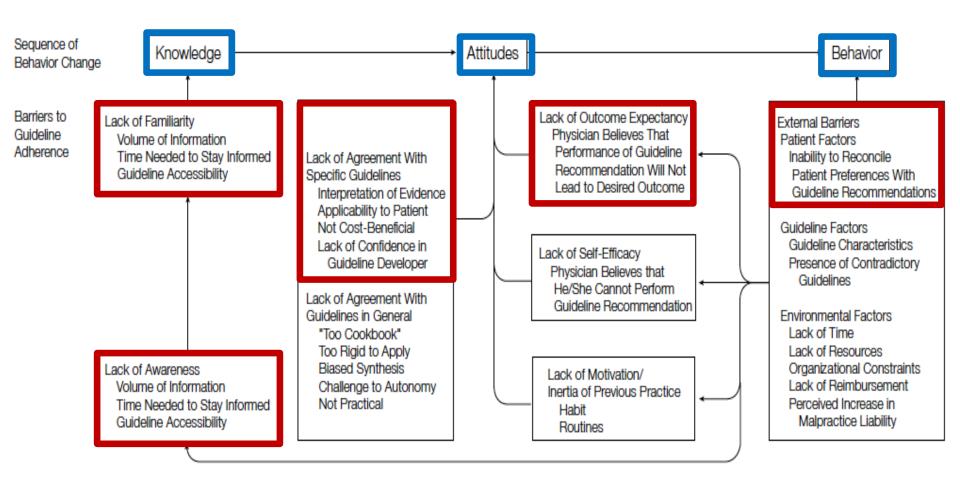

	OR (95% CI)	P-value
Guidelines Consistency	1.56 (1.09-2.24)	<0.0001
Age <50 50-64	0.40 (0.25-0.64) 0.54 (0.36-0.81)	<0.0001 0.0029
Sex	0.65 (0.42-0.98)	0.0409
Previous N/V	0.51 (0.34-0.76)	0.0164
Pre-chemo anxiety (>50)	0.37 (0.20-0.68)	0.0015
CR 1° course	6.63 (4.80-9.17)	<0.0001
O		


2013

Overall Phase, N (pts) = 517

Journal of Pain and Symptom Management

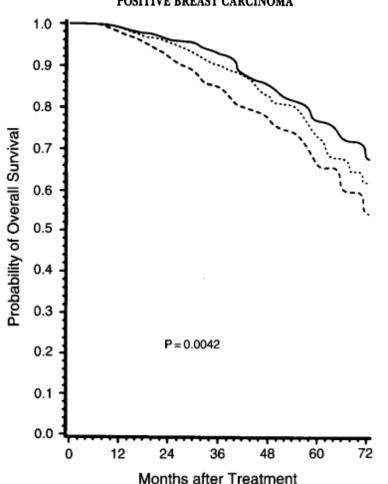
Adherence to Guidelines in the 'Real World' remains Suboptimal



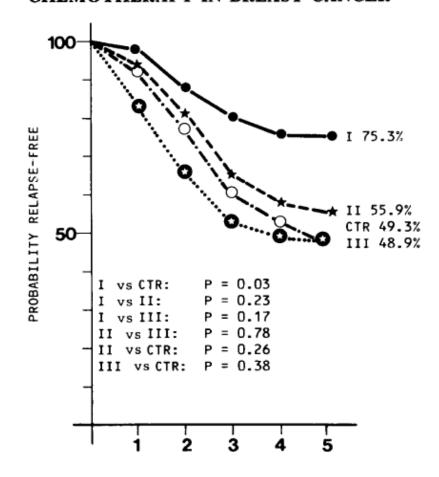
European Survey (>12,000 Pts)

Ricarte C et al, ECCO-FECS 2013

Barriers to Physician Adherence to Practice Guidelines

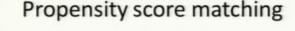

THE MULTIPLE ROLES FOR 'SUPPORTIVE CARE' IN CANCER

- 1. Reduce or eliminate associated symptoms and side-effects
- 2. Preserve or improve quality of life
- 3. Permit safe out-patient treatment
- 4. Enhance the use of the most effective antineoplastic agents



Breast Cancer: RDI and outcome

DOSE AND DOSE INTENSITY OF ADJUVANT CHEMOTHERAPY FOR STAGE II, NODE-POSITIVE BREAST CARCINOMA



DOSE-RESPONSE EFFECT OF ADJUVANT CHEMOTHERAPY IN BREAST CANCER

Decreasing CINV may improve RDI

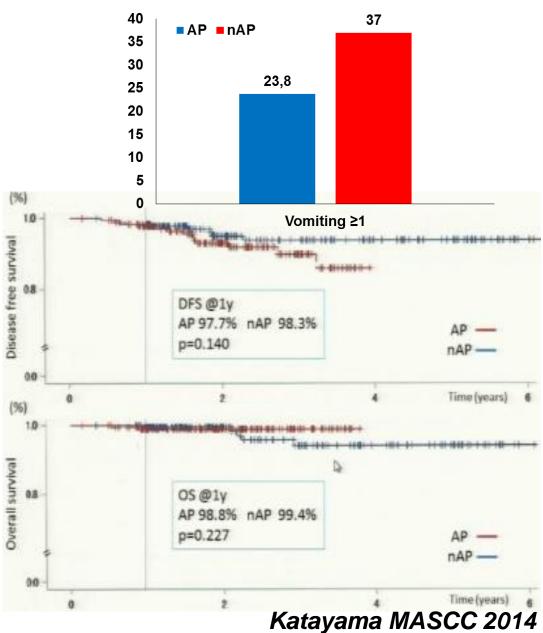
and outcome?

Jan. 2008 ~ Dec. 2012, 504 pts treated with A
AP group: 205 pts, nAP group 299 pts

propensity score (PS)*

AP group: 181 pts, nAP group 181 pts

adjustment variables (age, BMI, use of taxanes, dose of corticosteroids and institute)


nAP group

- Corticosteroid* on day 1 (iv) and day 2-4 or 5 (oral)
- 5HT3 receptor antagonist** on day 1 (iv)

· AP group

- oral aprepitant 125 mg on day 1, then 80 mg on days 2 and 3
- corticosteroid on day 1 (iv) and day 2-4 or 5 (oral)
- 5HT3 receptor antagonist on day 1 (iv)

Conclusions

- AC-based chemotherapy is 'de facto' to be considered as HEC
 - True for ASCO, NCCN,
 - Under Consideration for MASCC, ESMO
- Triple-drug approach (5HT3 + NK1 + DEX) is the standard in the majority of settings
 - A two-drug strategy is now to be considered a under-treatment
 - A fully-i.v. strategy is currently available
- Use guidelines to improve control!
 - Clinical attitudes outside guidelines do not guarantee the best CINV prophylaxis and treatment!
- New drugs & strategies upcoming:
 - Newer NK1s with different profiles (ex. Rolapitant)
 - Newer fully-oral strategy (ex. NEPA)
 - New (add-on) drugs (ex. Olanzapine)
 - Decreasing steroids side-effects (ex. DEX-sparing)

