11° EDIZIONE

 Progetto CANOA

 CARCINOMA MAMMARIO:

 QUALI NOVITA' PER IL 2021?

 "Saper leggere" uno studio clinico per migliorare la pratica clinica

Il carcinoma mammario metastatico nella paziente portatrice di VP germline BRCA: dalle evidenze scientifiche alle opzioni terapeutiche I tumori HR-positivi

Dr.ssa Angela Toss

Unità di Genetica Oncologica Università di Modena e Reggio Emilia Azienda Ospedaliero-Universitaria di Modena

Conflict of interest

Research funding:

none

Lectures:

Lilly

Advisor:

Lilly, Novartis, Roche

Stock options, ownership:

None

OUTLINE

- The prevalence of these patients in the population
 - Characteristics and outcomes of gBRCA HR+ breast cancer patients
 - Treatment strategies in BRCA mutation carriers
 - Data in neoadjuvant setting
 - Data in metastatic setting
- Suggestions on how to bring this together into a treatment pathway for this population

A higher proportion of patients with TNBC have a BRCAm than those with HR+ disease

Note that these calculations are based on very small patient populations; images are representative only Detailed analysis of BRCAm prevalence, age of onset and survival outcomes are currently lacking for breast cancer subtypes.

Winter et al. Ann Oncol. 2016 Aug; 27(8): 1532-15384

However, due to the relative prevalence, the majority of BRCA are found in patients with HR+ disease vs. TNBC

Note that these calculations are based on very small patient populations; images are representative only Detailed analysis of BRCAm prevalence, age of onset and survival outcomes are currently lacking for breast cancer subtypes.

Winter et al. Ann Oncol. 2016 Aug; 27(8): 1532-1538

BRCA HR+ tumours have distinct characteristics

Young age	Aggressive disease	High probability of recurrence
Often younger at diagnosis than sporadic HR+ patients Average age of diagnosis is under 45 years* ^{1–5}	Often have aggressive disease vs. non-BRCA breast cancers • Higher levels of nodal involvement* • Higher Ki67 proliferation marker expression ^{1,6,7}	Higher recurrence scores compared to sporadic HR+ patients >80% being classed as intermediate or high risk patients**8–10

*Based on patients with *BRCA2*m breast cancer. At least 85% of *BRCA2* are HR+ **Intermediate and high risk disease are classified as having recurrence scores of 18-30 or >30 respectively

 Mavaddat N et al. Cancer Epidemiol Biomarkers Prev. 2012; 21(1):134–47; 2. Krammer J, et al. Breast Cancer Res Treat. 2017;163:565-571;
 Fostira F, et al. Poster 105P, presented at ESMO 2016; 4. Peretz TY et al. Poster P3-03-02, presented at SABCS 2017; 5. Pellegrino B, et al. Acta Biomed. 2016;87:54-63; 6. Aleskandarany M, et al. Breast Cancer Res Treat. 2015;150:81-90; 7. Tredan O et al. Poster P3-03-05, presented at SABCS 2017; 8. Halpern N, et al. Int J Cancer. 2017;140:2145-2149; 9 Lewin R, et al. Breast Cancer Res Treat. 2016;157:511-516; 10.Shah PD, et al. Cancer. 2016;122:1178-118[‡]

BRCA prevalence in ER/PR low breast tumours may also be as high as TNBC

Both HR positive low (ER and/or PR 1–9%) tumours and triple negative tumours have a higher BRCAm rate than ER high tumours¹

Sanford RA, et al., Cancer. 2015 Oct 1;121(19):3422-7

Article

BRCA Detection Rate in an Italian Cohort of Luminal Early-Onset and Triple-Negative Breast Cancer Patients without Family History: When Biology Overcomes Genealogy

Angela Toss ^{1,2,*}, Eleonora Molinaro ¹, Marta Venturelli ¹, Federica Domati ¹, Luigi Marcheselli ¹, Simonetta Piana ³, Elena Barbieri ¹, Giovanni Grandi ⁴, Claudia Piombino ¹, Isabella Marchi ¹, Elena Tenedini ⁵, Enrico Tagliafico ^{5,6,7}, Giovanni Tazzioli ^{7,8} and Laura Cortesi ¹

A total of 40% of patients with estrogen receptors (ER) 1–9% were BRCA1 carriers.

Whether presence of a BRCAm impacts breast cancer survival outcomes remains unclear¹⁻³

Whilst a large number of studies have investigated outcomes of BRCAm breast cancer patients, these studies have had conflicting outcomes¹⁻³

Study	Result			
Copson ER et al. Lancet Oncol 2018 ¹	 The UK based POSH study (n=2,733) found no significant difference in OS between BRCAm and non-BRCAm patients in a cohort of early onset BC patients (see figure) 			
Baretta et al., 2016 Oct; 95(40): e4975 ²	 A large meta-analysis by Baretta et al. (n=105,220) found that BRCAm patients were associated with worse OS compared to non-BRCAm patients However there was some variability in these results by BRCA mutation type 			
Zhu et al. Oncotarget.	 Another meta-analysis by Zhu et al. (overall meta- analysis n=297,402) found worse OS for BRCA1m patients vs non-BRCAm patients and also for BRCA2m patients vs. non-BRCAm patients 			
70113-70127 ³	 However, studies which only analysed BRCA1 and BRCA2 mutations together found no significant difference in OS between BRCAm and non- BRCAm patients 			

OS KM curve for early-onset breast cancer patients by BRCAm status¹

	Reactive Oxyge Species (ROS)	n Replication Errors	X Rays	UV Light	Alkylating Agents	Spontaneous Reactions
	•			1	1	/
					M)
	SINGLE-S DELETI	STRAND BREAKS (ONS and INSERTI	SSBs) ONS	DOUBLE-ST	RAND BREAKS	(DSBs)
	BASE EXCISION REPAIR (BER)	NUCLEOTIDE EXCISION REPAIR (NER)	MISMATCH REPAIR (MMR)	HOMOLO RECOMBIN (HR)	GOUS IATION EN	NON MOLOGOUS ID JOINING (NHEJ)
L	PARP	XP, POLYMERASES	MLH1, MSH2, MSH6, MLH3,	ATM/A BRCA1 CHEK RAD5	NTR, [/2, [2,] 51,]	DNA-PXcs, Mre11, RAD50, NBS1
PN		PMS2	BRIP1, P	ALBZ		

Toss and Cortesi. J Canc Sci Therapy 2013 Cortesi L et al. Curr Cancer Drug Targets 2018

SYNTHETIC LETALITY

Toss and Cortesi. J Canc Sci Therapy 2013 Cortesi L et al. Curr Cancer Drug Targets 2018 TBCRC 031: Randomized Phase II Study of Neoadjuvant Cisplatin Versus Doxorubicin-Cyclophosphamide in Germline BRCA Carriers With HER2-Negative Breast Cancer (the INFORM trial)

Pathologic response was documented using the Residual Cancer Burden (RCB) Calculator (www.mdanderson.org/breastcancer_RCB).

Tung N et al. J Clin Oncol 2020

117 pts were included in outcome analyses:

- Mean age was 42 years (range, 24-73 years).
- 69% BRCA1+, 30% BRCA2+, and 2% had both mutations.
- Clinical stage was I for 19%, II for 63%, and III for 18%; 45% had nodal involvement at baseline.
- 70% had TNBC.

The **pCR rate** was **18% with CDDP and 26% with AC** (RR, 0.70; 90% CI, 0.39 to 1.2). The risk of **RCB 0/1** was **33% with CDDP and 46% with AC** (RR, 0.73; 90% CI, 0.50 to 1.1).

Tung N et al. J Clin Oncol 2020

Neoadjuvant Talazoparib for Patients With Operable Breast Cancer With a Germline *BRCA* Pathogenic Variant

Pathologic response was documented using the Residual Cancer Burden (RCB) Calculator (www.mdanderson.org/breastcancer_RCB).

Neoadjuvant single-agent oral talazoparib once per day for 6 months without chemotherapy produced substantial RCB-0 rate with manageable toxicity. The substantive pathologic response to single-agent talazoparib supports the larger, ongoing neoadjuvant trial.

	BRCA 1 or BRCA 2	Tissue Receptor	Clinical Stage	Surgery	RCB	Systemic Therapy After Surgery	Dose of Talazoparib at End of Study, mg	Highest-Grade Toxicity
	1	TNBC	T2N3a	N/A	Did not go to surgery	N/A	1	2
	1	TNBC	T2N1	SM	III	AC+PTX	0.75	3
	1	TNBC	T2N0	BM	I	AC+PTX	0.5	3
	1	HR positive	T1cN0	SM	0	TC	0.5	3
<u> </u>	1	TNBC	T3N1c	UM	III	AC+PTX	1	2
	1	TNBC	T2N0	ВМ	0	Declined chemotherapy	1	2
	1	TNBC	T2N1	BM	0	AC+PTX	1	1
	2	TNBC	T1cN0	BM	0	Declined chemotherapy	1	1
	1	TNBC	T2N0	BM		AC+PTX	0.5	3
	1	TNBC	T2N1	BM	0	AC+PTX	0.5	4
	1	HR positive	T1cN0	BM	П	Endocrine only	1	3
	1	TNBC	T4dN2	UM	0	AC+PTX	0.5	3
	1	TNBC	T2N1	BM	П	AC+PTX	1	1
	1	TNBC	T1cN0	ВМ	0	Declined chemotherapy	0.75	3
	2	Invasive lobular HR positive	T1cN0	SM	0	Endocrine only	0.25	3
	1	TNBC	T2N0	UM	П	AC+PTX	0.5	3
	2	TNBC/metaplastic (chondrosarcomatous)	T2N0	BM	0	TC	1	1
	1	TNBC	T2N0	BM		AC+PTX	1	2
	1	HR positive	T1cN1	UM	0	Endocrine only	1	1
1	2	HR positive	T2N1	BM		Endocrine only	1	2

Litton JK et al. JCO 2019

GeparOla

Primary Objective and Endpoint:

 To assess the pathological complete response (ypT0/is ypN0) rate of neoadjuvant treatment of olaparib and paclitaxel followed by epirubicin and cyclophosphamide (PO→EC) in patients with early BC and HR deficient tumors (defined as either tBRCA1/2 mutation and/or HRD score high and/or known gBRCA mutation).

GBG	
GEHMAN BREAST BROUP	Primary Endpoint - pCR ypT0/is ypN0

		Olaparib+Paclitaxel pCR rate (90%CI)	Carboplatin+Paclitaxel pCR rate (90%CI)
	HR+ patients (n = 29)	52.6% (32.0%, 72.6%)	20.0% (3.7%, 50.7%)
•	HR- patients (n = 77)	56.0% (43.4%, 68.0%)	59.3% (41.7%, 75.2%)
	Patients age < 40 (n = 32)	76.2% (56.3%, 90.1%)	45.5% (20.0%, 72.9%)
۲	Patients age ≥ 40 (n = 74)	45.8% (33.4%, 58.6%)	50.0% (32.7%, 67.3%)

GEPAR-

OlympiAD: Phase III study of olaparib vs. TPC in gBRCAm HER2- mBC¹

Study design

gBRCAm mBC

- TNBC or HER2-negative, ER/PR positive
- ≤2 prior chemotherapy lines for mBC
- Previous treatment with anthracycline and taxane in either the (neo)adjuvant or metastatic setting
- Hormone receptor positive (HR+) disease progressed on ≥1 endocrine therapy, or not suitable
- If patients have received platinum therapy there should be:
 - No evidence of progression during treatment in the advanced setting
 - At least 12 months since (neo)adjuvant treatment and randomisation
- ECOG PS 0-1
- At least one lesion that can be assessed by RECIST v1.1

· Prior platinum therapy

* Tablet formulation (2 tablets twice daily)

1. https://clinicaltrials.gov/ct2/show/NCT02000622 [Accessed February 2019]; 2. Robson et al. Poster OT1-1-04, presented at SABCS 2014; 3. AZ data on file (2017); 4. Robson et al. N Engl J Med. 2017; 377:523-533₁₈

Primary endpoint: Olaparib treatment significantly improved PFS assessed by BICR compared to TPC¹

Stratified log rank test, stratified by previous chemotherapy for mBC (yes/no) and HR+ versus TNBC FAS; Maturity rate: 234/302=77%; 2 sided p value; figure adapted with permission¹ Data cutoff: 9 December 2016 1. Robson et al. N Engl J Med. 2017; 377:523-533; 2. AZ data on file (2017)

50% of patients in OlympiAD were HR+

	Olaparib n=103 n (%)	TPC n=49 n(%)
Number of prior chemotherapy lines 0 1 2	28 (27.2) 43 (41.7) 32 (31.1)	13 (26.5) 17 (34.7) 19 (38.8)
Received previous chemotherapy for mBC	80 (77.7)	37 (75.5)
Received prior endocrine therapy [*] Adjuvant/neoadjuvant Metastatic Total	71 (68.9) 66 (64.1) 97 (94.2)	36 (73.5) 28 (57.1) 45 (91.8)
Received prior platinum therapy for breast cancer	24 (23.3)	11 (22.4)

 Among patients with ER/PgR+ breast cancer, two olaparib patients (1.9%) and three TPC patients (6.1%) reported prior use of CDK4/6 inhibitors

> *Patients may appear under more than one previous treatment modality Data cutoff: 9 December 2016 1. Robson et al. N Engl J Med. 2017; 377:523-533²⁰

Risk of progression was reduced in olaparib-treated patients with HR+ disease and TNBC compared to TPC¹

The OlympiAD study was not powered to identify differences in treatment effect between subgroups, and any differences observed here are hypothesis-generating Data Cutoff : 9 December 2016

1. Robson et al. N Engl J Med. 2017; 377:523-533, 2. Robson et al. J Clin Oncol 35, 2017 (presentation associated with abstr LBA4)

OVERALL SURVIVAL

Robson ME, Ann Oncol. 2019

EMBRACA: Phase III study of talazoparib vs. TPC in patients with locally advanced or metastatic breast cancer

Study design

- Locally advanced breast cancer and/or metastatic disease appropriate for systemic single cytotoxic chemotherapy
- gBRCAm
- ECOG 0-2
- ≤3 prior lines of chemotherapy for locally advanced/metastatic disease
- HER2-negative
- Prior platinum permitted if:
 - In (neo-)adjuvant setting: disease-free interval of ≥6 months after the last dose
 - In advanced setting: no objective disease progression while receiving platinum
- Previous treatment with a taxane, an anthracycline, or both, unless this treatment was contraindicated

 History of CNS metastasis (y/n)

56% of patients in EMBRACA were HR+

	Talazoparib (n=157)	Overall TPC (n=84)
Number of prior chemotherapy lines 0 1 2 3	59 (37.6) 57 (36.3) 36 (22.9) 5 (3.2)	28 (33.3) 33 (39.3) 19 (22.6) 4 (4.8)
≥4	0 (0.0)	0 (0.0)
Number of prior cytotoxic chemotherapy for ABC, median (min, max)	1 (0,3)	1 (0,3)
Prior endocrine therapy CDK4/6 inhibitors mTOR inhibitor	142 (90.4) 16 (10.2) 20 (12.7)	70 (80.3) 6 (7.1) 13 (15.5)
Received prior platinum therapy for breast cancer	15 (9.6)	11 (13.1)

EMBRACA: PFS: Subgroup analysis

Subgroup	Patients, n (%)		Hazard Ratio (95% CI)
All randomised patients (ITT)	431 (100)		0.54 (0.41–0.71)
Patients with central testing available	408 (94.7)	•••• I	0.53 (0.40–0.70)
BRCA status by central testing			
<i>BRCA1</i> m	183 (42.5)		0.59 (0.39–0.90)
<i>BRCA2</i> m	225 (52.2)		0.47 (0.32–0.70)
Hormone receptor status			
TNBC based on most recent biopsy	190 (44.1)		0.60 (0.41–0.87)
HR+ based on most recent biopsy	241 (55.9)		0.47 (0.32–0.71)
History of CNS metastasis			
Yes	63 (14.6)		0.32 (0.15–0.68)
No	368 (85.4)		0.58 (0.43–0.78)
Prior platinum treatment			
Yes	76 (17.6)		0.76 (0.40–1.45)
No	355 (82.4)	L L L L L L L L L L L L L L L L L L L	0.52 (0.39–0.71)
Prior regimens of cytotoxic chemo for aBC		F • I	
0	165 (38.3)		0.57 (0.34–0.95)
1	161 (37.4)	0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2	.00 0.51 (0.33–0.80)
≥2	105 (24.4)	Favours talazoparib Favours TPC	0.56 (0.34–0.95)

HR+ HER2- mBC: Subgroup analysis of PFS shows benefit of PARPi

Eiermann W et al. Abstract 1070, presented at ASCO 2048

Talazoparib versus chemotherapy in patients with germline *BRCA1/2*mutated HER2-negative advanced breast cancer: final overall survival results from the EMBRACA trial

Subgroup	Talazoparib <i>n</i> (events)	Chemotherapy n (events)	1	Hazard ratio and 95% CI
All randomized patients (ITT)	287 (216)	144 (108)	⊢∎ +I	0.848 (0.670-1.073)
Age				
<50 years	182 (148)	67 (49)	⊢_∎ 1	1.036 (0.742-1.447)
≥50 years	105 (68)	77 (59)	⊢ ∎	0.705 (0.492-1.012)
Race				
White	190 (143)	108 (85)	⊢	0.755 (0.571-0.998)
Other	97 (73)	36 (23)	F ■ 1	1.278 (0.758-2.155)
Geographic region				
North America	99 (79)	57 (39)	⊢	0.921 (0.615-1.380)
Europe	134 (96)	56 (44)		0.825 (0.570-1.192)
Rest of the world	54 (41)	31 (25)		0.750 (0.432-1.300)
ECOG PS			_	
ECOG 0	153 (106)	84 (60)	⊢∎∔⊣	0.870 (0.629-1.203)
ECOG >0	133 (109)	59 (47)	⊢	0.788 (0.555-1.121)
BRCA status by central testing				
BRCA1	123 (97)	60 (47)	F-8-44	0.772 (0.539-1.104)
BRCA2	147 (103)	78 (60)		0.794 (0.571-1.106)
HR status				
TNBC based on most recent biopsy	130 (102)	60 (47)	⊢─■┼──┤	0.899 (0.634-1.276)
HR+ based on most recent biopsy	157 (114)	84 (61)		0.827 (0.597-1.143)

BROCADE 3: Phase III study in gBRCAm HER2- mBC

Primary Endpoint: PFS by Investigator Assessment

Months from Randomization

C/P: Carboplatin and Paclitaxel

Dieras V et al, ESMO 2019

PFS Subgroup Analysis (Investigator-Assessed)

Subgroup	Veliparib+C/P	Placebo+C/P	Hazard Ratio for Disease Progressi	on or Death (95% CI)
	No. of patients with events/total			
All patients	217/337	132/172	⊢ ●	0.70 (0.57, 0.87)
Hormone receptor status				
ER positive and/or PgR positive	124/174	74/92	F●1	0.69 (0.52, 0.92)
ER negative and PgR negative (TNBC)	93/163	58/80	⊢ ● →	0.72 (0.52, 1.01)
BRCA status				
BRCA1 mutation	113/177	68/89	I — ● I	0.72 (0.53, 0.97)
BRCA2 mutation	106/167	67/86	⊢ ● - 1	0.66 (0.48, 0.89)
Prior platinum therapy				
Prior platinum therapy	19/27	14/16		0.70 (0.34, 1.44)
No prior platinum therapy	198/310	118/156	⊢ ●	0.71 (0.56, 0.89)
Prior cytotoxic therapy for metastatic diseas	e			
Prior chemotherapy in metastatic setting	46/63	29/33		0.80 (0.50, 1.27)
No prior chemotherapy in metastatic setti	ng 171/274	103/139	⊢_●	0.69 (0.54, 0.88)
History of CNS metastases				
Yes	14/16	8/10	⊢ ⊢	2.08 (0.78, 5.52)
No	203/320	124/161	⊢	0.66 (0.53, 0.83)
			· · · · · · · · · · · · · · · · · · ·	
			0.1 1	10
			Favors Veliparib + C/P Pla	Favors

C/P: Carboplatin and Paclitaxel

Dieras V et al, ESMO 2019

Olaparib and durvalumab in patients with germline *BRCA*-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study

Domchek SM et al. Lancet Oncology 2020

Questions for the treatment of gBRCAm HR+ mBC patients

When should we be testing our HR+ patients?

How does gBRCAm status impact standard of care?

How should we sequence PARP inhibitors with other drug classes?

With regards to CDK4/6i use?

Before or after chemotherapy?

At first opportunity or save for later?

Progression-free survival (PFS) of CDK4/6 inhibitors in clinical trials

Mechanism of Action and Clinical Efficacy of CDK4/6 Inhibitors in BRCA-Mutated, Estrogen Receptor-Positive Breast Cancers: Case Report and Literature Review

Militello AM et al. Frontiers in Oncology 2019

CANCER PREVENTION, HEREDITARY GENETICS, AND EPIDEMIOLOGY

A real-world evidence study of CDK4/6 inhibitor treatment patterns and outcomes in metastatic breast cancer by g*BRCA* mutation status.

Patients received letrozole plus palbociclib (42.4 and 39.8%, respectively), fulvestrant plus palbociclib (32.9 and 30.7%), or other CDK4/6 regimens (24.7 and 29.5%) across all lines.

The gBRCAm group had a non-significant, shorter Time to first subsequent therapy or death (TFST) than gBRCAwt (stratified HR 1.24; 95% CI 0.96– 1.59). OS was significantly shorter in gBRCAm than gBRCAwt patients (stratified HR 1.50; 95% CI 1.06–2.14).

The results of this real-world study suggest that treatment outcomes with CDK4/6 inhibitors may be poorer in patients with gBRCAm compared with gBRCAwt disease.

Characteristic or Outcome	g <i>BRCA</i> m (N = 85; 9.9%)	g <i>BRCA</i> wt (N = 774; 90.1%)				
Mean (SD) age, years	53 (13.4)	58 (12.0)				
Line of earliest CDK4/6 use						
First, %	42.4	37.9				
TFST, months*	11 (6–18)	14 (12–15)				
Second, %	31.8	32.7				
TFST, months*	10 (6–11)	10 (8–12)				
Third and higher, %	25.9	29.5				
TFST, months*	6 (3–11)	7 (5–9)				
*Data are KM median (95% confidence interval [CI])						

BREAST CANCER-METASTATIC

Pooled ctDNA analysis of the MONALEESA (ML) phase III advanced breast cancer (ABC) trials.

Gene	WT RIB Median PFS, mo	WT PBO median PFS, mo	HR (95% CI)	Altered RIB Median PFS, mo	Altered PBO Median PFS, mo	HR (95% CI)	<i>P</i> Value for Gene- Treatment Interaction ^a
FRS2	n = 829 22.21	n = 629 13.24	0.60 (0.52- 0.69)	n = 23 12.52	n = 22 1.87	0.26 (0.11- 0.58)	.03
PRKCA	n = 830 22.14	n = 632 13.04	0.60 (0.52- 0.70)	n = 22 17.18	n = 19 7.23	0.23 (0.09- 0.60)	.04
BRCA1/2	n = 817 22.14	n = 631 12.98	0.60 (0.52- 0.70)	n = 35 NA	n = 20 7.06	0.30 (0.15- 0.61)	.06
MDM2	n = 835 22.21	n = 633 13.11	0.60 (0.52- 0.69)	n = 17 11.27	n = 18 1.87	0.29 (0.12- 0.70)	.06
ERBB2	n = 818 22.34	n = 632 13.24	0.59 (0.51- 0.69)	n = 34 12.75	n = 19 1.99	0.33 (0.16- 0.69)	.13
AKT1	n = 812 22.14	n = 630 13.04	0.60 (0.52- 0.69)	n = 40 18.63	n = 21 7.56	0.39 (0.18- 0.84)	.33

WT, wildtype. ^a Not corrected for multiple testing; results are exploratory.

Andrè F et al. ASCO 2020

Possible treatment options in BRCAm HR+ HER2- mBC

CONCLUSIONS

- The majority of BRCA are found in patients with HR+ disease vs. TNBC.
- About 40% of patients with ER low positive tumors are BRCA carriers.
- BRCA HR+ tumours have acknowledged distinct characteristics but conflicting results on outcomes with traditional therapies.
- Olaparib and Talazoparib improve PFS compared to TPC in the overall population of gBRCAm.
- There is a biological rationale for CDKi + ET in gBRCAm tumors but, at present, real-world data suggest that treatment outcomes with CDKi may be poorer in patients with gBRCAm.
- BRCA genetic testing should be introduced in MBC regardless family history and tumor biology.

11° EDIZIONE Progetto CANOA CARCINOMA MAMMARIO: QUALI NOVITA' PER IL 2021? "Saper leggere" uno studio clinico per migliorare la pratica clinica

GRAZIE PER L'ATTENZIONE!