<text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

- PET scans are more accurate than CT scans in assessing suspected recurrence
- PET scans are routinely performed to rule out extrahepatic disease in patients who are considered surgical candidates for resection of isolated liver metastases
- PET scans are used to evaluate rising CEA levels when other imaging studies are negative

Response to Therapy

- There are minimal data regarding the role of PET scans in monitoring the response to chemotherapy or radiation therapy
- PET scans have been used to assess response to regional therapies of the liver where they can distinguish between necrosis and residual tumor

Summary of Recommendations

- Staging
 - PET is not routinely indicated unless initial studies suggest but are not conclusive for metastatic disease
- Detection of recurrence
 - PET scans are indicated for the evaluation of a rising CEA level or a patient with suspicious symptoms unless a CT scan has already identified metastatic disease
- PET scans are not indicated for routine surveillance for colon cancer recurrence
- Management of metastatic disease
 - PET scans are not routinely indicated to restage patients after non-surgical treatment of metastatic disease unless curative resection is considered

Predictive value of (18)FDG PET-CT for tumour response in patients with locally advanced rectal cancer treated by preoperative chemoradiotherapy.

Kim JW et al. Int J Colorectal Dis. 2013 Sep;28(9):1217-24.

Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, 809 Madu-1-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do, 410-769, Republic of Korea.

PURPOSE:

Although (18)fluorine-2-deoxy-D-glucose positron emission tomography-computed tomography ((18)FDG PET-CT) is considered a reliable modality for determining tumour response after neoadjuvant chemoradiotherapy (CRT) in locally advanced rectal cancer (LARC), the role of (18)FDG PET-CT for predicting pathologic complete response (pCR) remains unclear. The aim of this study was to evaluate whether (18)FDG PET-CT can predict tumour response after CRT in patients with LARC, in terms of downstaging and pCR.

METHODS

Between March 2009 and February 2012, 151 patients with LARC treated with neoadjuvant CRT followed by radical surgery were reviewed retrospectively. Pre-CRT SUVmax (maximum standardized uptake value), post-CRT SUVmax, ΔSUVmax (difference between pre- and post-CRT SUVmax), and RI-SUV (response index) were measured before and after CRT. Univariate and multivariate analyses were used to analyse the association of PET-CT-related parameters and clinical variables, to assess downstaging and pCR.

RESUL

Downstaging occurred in 48 patients (31.7 %) and pCK in 19 patients (12.5 %). Univarate and multivariate analysis revealed post-CRT SUVmax as a significant factor for prediction of downstaging, with sensitivity of 60.4 %, specificity of 65.0 %, and accuracy of 55.9 %, for a cutoff value of 3.70. Regarding pCR, post-CRT SUVmax was again found as a significant parameter by univariate and multivariate analysis, with sensitivity or 73.7 %, specificity of 63.7 %, and accuracy of 64.9 %, for a cutoff value of 3.55.

CONCLUSIONS

The results indicate that post-CRT SUVmax independently predicts downstaging and pCR. However, the predictive values of post-CRT SUVmax for tumour response after neoadjuvant CRT are too low in sensitivity and specificity to change the treatment plan for LARC.

Biological Target Volume Overlapping Segmentation System Method for Avoiding False-Positive PET Findings in Assessing Response to Neoadjuvant Chemoradiation Therapy in Rectal Cancer. Maffione AM et al Clin Nucl Med, 2014 Mar;39(3):e215-9 *Department of Nuclear Medicine, †Medical Physics Unit, and ‡Department of Radioberapy & Oncology, Santa Maria della Misericordia Hospital, Rovigo, Italy; and §Department of Radiology, University of Southern California, Los Angeles, CA. PURPOSE: FDG PET/CT has a recognized high predictive power to assess the response to neoadjuvant chemoradiation therapy (CRT) in patients affected by locally advanced rectal cancer (LARC), but a relatively high number of false-positive findings decrease its specificity: with the aim to solve this problem, a new method of imaging analysis is here proposed. METHODS: The new method here described, named Biological target volume (BTV) Overlapping Segmentation System (BOSS), has been applied on 24 consecutive patients with LARC that were all previously classified as nonresponders to CRT by means of the response index criterion that is adopted in our center. The BOSS method is based on the quantification of the amount of superimposition between pretreatment and posttreatment BTV. All BTVpre was down using a threshold of 60% of SUVmax in the tumor (BTV60). The results (overlap volumes and percentage of overlap volume) were then matched up with postoperative pathology classified by the Mandard's tumor regression grade (TRG) system. <u>RESULTS:</u> Eleven patients were classified as responders (TRG1-2) and 13 as nonresponders. In our experience, a cutoff of 56% on the %Over_60 provided the best results in terms of true negative (11 cases), true positive (12 cases), false negative (1 case), and false positive (none). CONCLUSIONS:

This new method, we developed, appears able to unmask the false-positive cases, improving the specificity of FDG PET/CT to predict the response to CRT patients with LARC

Proposal of a new 18F-FDG PET/CT predictor of response in rectal cancer treated by neoadjuvant chemoradiation therapy and comparison with PERCIST criteria.

Maffione AM et al. Clin Nucl Med. 2013 Oct;38(10):795-7.

From the *Nuclear Medicine Department, PET Unit, †Medical Physics Department, and ‡Radiotherapy Department, Santa Maria della Misericordia Hospital, Rovigo, Italy; and §Department of Radiology, University of Southern California, Los Angeles, CA.

PURPOSE

The aim of this study was to correlate PERCIST criteria and a new criterion developed in our center that we named PREDIST (PET Residual Disease in Solid Tumor) with tumor regression grade (TRG) classification of pathologic response to neoadjuvant chemoradiotherapy (CRT) in patients affected by rectal cancer.

Seventy-three consecutive patients affected by locally advanced rectal cancer (LARC) were retrospectively included. FDG-PET/CT scans were performed at staging time and after the end of CRT (mean time 6.5 weeks). The analysis was performed by PERCIST criteria 1.0 and PREDIST criteria based on a new definition of residual disease. We split the TRG system into responders (TRG1-2) and nonresponders (TRG3-5). Pearson chi-square analysis by cross-tabulations was performed.

RESULTS:

PREDIST classification was statistically predictive of TRG response (P = 0.004, sensitivity 81.8% and specificity 54.9%). On the contrary, PERCIST criteria was not statistically correlated to TRG (P = 0.128) caused by a very low specificity (9.8%).

CONCLUSIONS:

FDG-PET/CT scan is an accurate tool to predict preoperatively the response to CRT in LARC patients. The novel proposed criterion (PREDIST) seems to be helpful to discriminate responder by nonresponder patients.

			A Ma A TET TA A LT			
			About Author Manuscrip	cess pt ication in a peer reviewed journ its Submit a mar	al	
From: <u>J Nucl M</u> Publishe J Nuc doi: 11 <u>Copyright/Licer</u>	led. Author manuscript: Id in final edited form as I Med. 2009 May; 50(Su 0.2967/jnumed, 108.057; mae.► Request p 6	<u>available in PMC 2</u> 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	<u>009 October 1.</u>			
Summary Study	of Studies on Test Pts/lesions	t-Retest Repr No. and time between PET scans	oducibility of Untreated Tumors With Imaging and reconstruction parameters	out Interval Therapy Variables and ROIs	Major findings	
Minn 1995	10 pts; 10 lesions; primary lung cancer ≥ 2 cm	2 scans; mean 1.8 ± 1.8 d	PET alone/ 68 Ge AC; dynamic acquisition × 60 min; 3.4-mm slice thickness (n = 8); 6.75-mm slice thickness (n = 2); 1.28 × 1.28 matrices; FBP 0.3 Hanning filter; ~8 mm FWHM; axial resolution not given	Maximal SUL 1.2 × 1.2 cm; ROI 4 × 4 pixels ("peak")	Test-rest mean percentage difference between scans/correlation (SUL: 10% s 7%) (0.987; 141: 10% s 8%)(0.969; SUL glucose correction: 6% s 6%)(0.905; K; 24% : 15%)(0.812; k_2; 42% s 31% (0.0.765; k_2; 24% s 13% (0.053)	
Weber 1999	16 pts; 50 lesions; various cancers; tumor volume 0.8 –111 mL	2 scans; mean 3 ± 3 d	PET alone/ ⁶⁸ Ge AC; dynamic acquisition × 70 min; 3.4-mm slice thickness; 128 × 128 matrices (4 × 4 mm); FBP 0.4 Hanning filter; ~8 mm FWHM; axial resolution ~5 mm	SUV bw in 50% threshold around maximal ¹⁸ F-FDG ROI (mean diameter 32 ± 36 mm, range 12 -60 mm)	d Mean percentage difference in SUV for test–retert is -104; 0.9 SUV unit required for significant change, greater variability in smaller lesions; 2 glucose correction, no significant differences	
Nakamoto 2002	10 pts; lung cancer	2 scans; within 1 wk	Reassessment of Minn data; same parameters for image acquisition and reconstruction	Maximal SUL in 1 × 1 pixel anywhere in tumor; highest average SUL in 4 × 4 pixels in tumor; effective glycolytic volume (SUL × volume)	Mean percentage difference between scans (maximal SUL 11, 3% = 8%; mean SUL 10,1% = 8.2%; effective glycolytic volume: 10,1% = 8%; mean percentage differences slightly reduced with glucose correction)	
Krak 2005	11 pts; 29 lesions; NSCLC; median volume ~9 cm ^{3±}	2 scans; 2 consecutive days	PET alone/ ⁶⁸ Ge AC; dynamic acquisition × 60 min; 2.5-mm slice thickness; 128 × 128 matrices; FBP 0.5 Hanning filter; OSEM (2 iterations, 16 subsets); ~7 mm	FBP vs. OSEM; SUL ROIs (manual; 15 mm fixed; 50%, 75% threshold; single pixel maximum)	Test-relative reproducibility similar for FBV w. OSEAI; mean percentage with the second seco	
			FWHM; axial resolution not given		for 15-mm fixed ROI (0.95); ICC for threshold/single-pixel SUVmax $0.89-0.91$	

le Modifica Vai a	a Preferiti ?					
Preferiti 👍 🔿	BioMed Central Journal.	🙋 Ospedale Sacro Cuore	. 🎴 univadis 😂 FDG-PET and other ima	http://www.nccn.org-pr	🙋 Raccolta Web Slice 👻 🚞 Statistica	-
3 http://www.ncbi.n	lm.nih.gov/pmc/articles/	P		<u>6</u> -	🔝 🗉 🌐 🔹 Pagina 🖲 Siturezi	ta ▼ Strumenti ▼
🖹 🗎 🔬 - I	[]] 4 4 5	/ 50 💌 💌 🚺 130% -	Trova •			
6	Response Defir	nitions for Clinical Tria	TABLE 4 als: Lymphoma Response (33)			
-	Response	Definition	Nodal masses	Spleen, liver	Bone marrow	
NIH-PA Autho	CR	Disappearance of all evidence of disease	(a) ¹⁸ F-FDG-avid or PET-positive before therapy must be PET- negative after therapy; mass of any size is permitted if PET is negative; (b) variably ¹⁸ F-FDG-avid or PET-negative; regression to normal size on CT	Not palpable, nodules disappeared	Infiltrate has cleared on repeated biopsy; if indeterminate by morphology, immunohatschemistry should be negative for CR	
or Manuscript	PR	Regression of measurable disease and no new sites	≥50% decrease in SPD of up to 6 largest dominant masses; no increase in size of other nodes; (a) ¹¹ F.FDG-avid or PET-positive before therapy; one or more PET- positive at previously involved site; (b) vanably ¹¹ F.FDG-avid or PET-negative; regression on CT	≥50% decrease in SPD of nodules (for single nodule in greatest transverse diameter); no increase in size of liver or spleen	Irrelevant if positive before therapy; cell type should be specified	
н	SD	Failure to attain CR/PR or PD	(a) ¹⁸ F-FDG-avid or PET-positive before therapy; PET positive at prior sites of disease and no new sites on CT or PET; (b) variably ¹⁷ F-PG-avid or PET- negative; no change in size of previous lesions on CT			
NIH-PA Autho	Relapsed disease or PD	Any new lesion or increase of previously mvolved sites by ≥50% from nadir	Appearance of new lesions ≥ 1.5 cm in any axis. ≥50% increase in SPD of move than one node, or err of previously identified node - 1 cm in short park: lesions PET- positive if ¹⁴ E-FDC-a-wid lymphoma or PET-positive before therapy	>50% increase from nadir in SPD of any previous lesions	New or recurrent involvement	
r Manus	CR = complete r	emission; PR = partial remiss	ion; SPD = sum of product of diameters; SD	= stable disease; PD = prog	ressive disease.	

New application of dual point 18F-FDG PET/CT in the evaluation of neoadjuvant chemoradiation response of locally advanced rectal cancer.

Yoon HJ et al. Clin Nucl Med. 2013 Jan;38(1):7-12.

Km=Ks+Vrтa=mtca0+Vrтa

with

Ks=mtca0,

where m_t is the secant (or average) TRF slope in the chosen time interval centered at t_0 and ca0=ca(t0) (see Figure Figure11). The rate K_s defined by Equation 2 (i.e., the ratio between the TRF slope and AIF level at time t_0) can be determined from measurements during the late phase alone. Contrary to the Patlak method, knowledge of the full AIF is not required. To the extent that $K_s V_t \tau_a$, K_s might directly serve as an (negatively biased) approximation of K_m . Moreover, to the extent that V_r can be replaced by a suitable constant value V^- r, K_s differs from K_m only by a τ_a - dependent offset that can be added to K_s to obtain a corrected value

Ks(c)=Ks+K0=Ks+V⁻rta

Current Approaches and Challenges for Monitoring Treatment Response in Colon and **Rectal Cancer.**

McKeown E et al. J Cancer. 2014 Jan 1;5(1):31-43.

remains a topic of debate al single best approach. Th challenges to monitoring di molteplici modalità potrebbe consentire l'adequata stima conducted utilizing PubN dei risultati di terapia

metastases, neoadjuvant therapy, reciar cancer, imaging modalities, CEA, down-staging, tumor response, and biomarkers. Directed searches of the embedded references from the primary articles were also performed in standard for monitoring response to therapy. Endoscopy is useful for evaluating local recurrence, but not in assessing tumor response outside of the limited information gained by direct examination of intra-lumenal lesions. Imaging is used to monitor tumors throughout the body for response, with CT, PET, and MRI employed in different circumstances. Overall, each has been validated in the monitoring of patients with colorectal cancer and residual tumors. Conclusion: Although there is no imaging or serum test to precisely correlate with a tumor's response to chemo- or radiation therapy, these modalities, when used in combination, can aid in allowing clinicians to adjust medical therapy, pursue operative intervention, or (in select cases) identify complete responders. Improvements are needed, however, as advances across multiple modalities could allow

			L OF CANCER			
From: <u>J Cancer, 201</u> Published onlir	4: 5(1): 31-43, te 2014 January 1	. doi: 10.7150/jca.7987				
Copyright/License ► Table 1	Request pr	rmission to reuse				
Comparison of Imaging Modalities for Evaluation of Response of Rectal Cancer Following Neoadjuvant CRT.						
Chennupati, 2012 ³³³	PET	All patients who received both pre- and post-CRT PET scans. Compared PET results to TRG	35 patients; No correlation between SUV, metabolic tumor volume between pathologic responders versus non-responders	Changes on PET have limited value in predicting pathologic response of rectal cancer after neoadjuvant CRT		
MERCURY, 2007 ¹¹²	MRI	MRI preoperatively at an average of $_{25}$ days before surgery. Only short duration radiotherapy included.	679 patients with rectal cancer; MRI vs. pathological examination of extramural depth	MRI and histopathologic assessment of tumor spread correlated within 0.5mm		
Brown, 2004 ³²	ERUS, DRE, MRI	Each of three modalities performed at baseline and repeated two weeks prior to surgery. Both early stage rectal cancers and those receiving nCRT included. Compared each to final pathology. Assessed favorability (invasion, nodal involvement)	φ8 patients undergoing TME; MRI 94% agreement with pathology; DRE 65% agreement with pathology; ERUS 69% agreement with pathology;	MRI is a better predictor of tumor response		
Wieder, Geinitz, 2007 ¹¹³	PET-FLT	PET prior to CRT, two weeks after initiation of CRT, & 3-4 weeks after chemotherapy but before resection	10 patients; Poor correlation with pathologic specimen.	PET uptake of FLT decreased steadily. Did not correlate to tumor regression.		
Pastor C, 2011 ⁸⁹	ERUS	4 - 6 weeks after neoadjuvant CRT; Goal of the study was to validate ERUS as a predictor pathologic response. Correlated to pathologic specimen	235 patients; 20% misclassified as uNo; 75% correct regarding LNs; Overall, over-staging in 37%	ERUS is not accurate in identification of positive nodes.		
Denecke, 2005 ⁷⁹	MRI, CT, and PET	Each patient received one of the modalities before neoadjuvant CR1 and 2-4 weeks after neoadjuvant CRT. Compared with ERUS and pathology.	Γ 23 patients with T3 or 4 rectal cancer after CRT; FDG PET: 100% (sens), 60% (spec); CT 54% (sens), 80% (spec); MR 71% (sens), 67% (spec)	PET is superior to CT and MRI predicting response to CRT		
Legend: PET: Imaging;	Positronic Er	nission Tomography; CRT: Chemoradiotherapy; SUV: Stan	dardized uptake value; TRG: Tumor regres	sion grade; MRI: Magnetic Resonance;		

