CARCINOMA POLMONARE: QUALI NOVITÀ NEL 2022?

Il trattamento della malattia ALK positiva

Ilaria Attili, MD

Division of Thoracic Oncology European Institute of Oncology ilaria.attili@ieo.it

DISCLOSURES

No disclosure

AGENDA: ALK+ NSCLC in 2022, one more step to the future

The basements

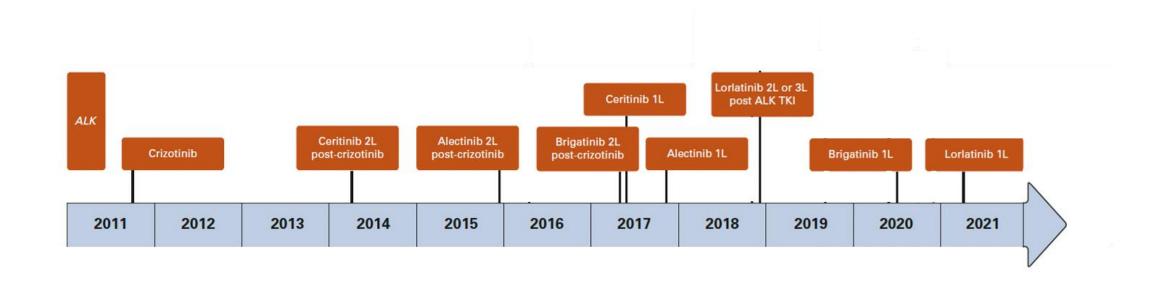
- a wonderful story -

The current

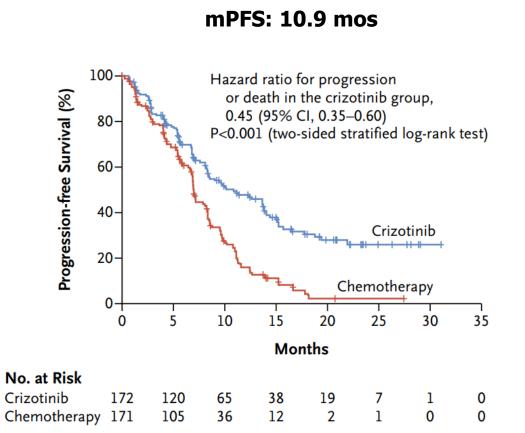
- Treatment scenario -

The future

- Are we ready for next steps? -

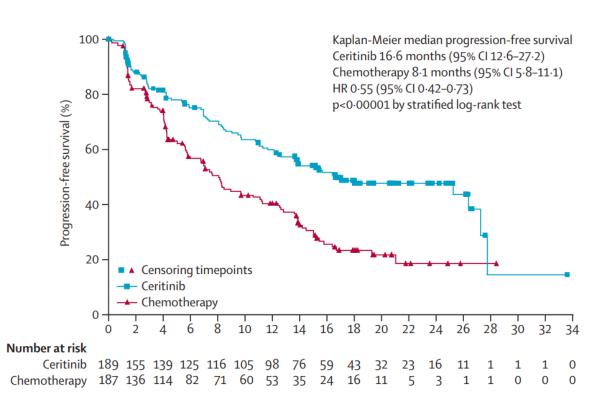

-First/second gen vs CT in pretreated PROFILE 1007/ASCEND-5 (HR 0.49) -First/second gen vs CT in 1L PROFILE 1014/ASCEND-4

- -Second gen vs first gen ALK TKI
- -Third gen vs first gen ALK TKI
- -TKI sequencing

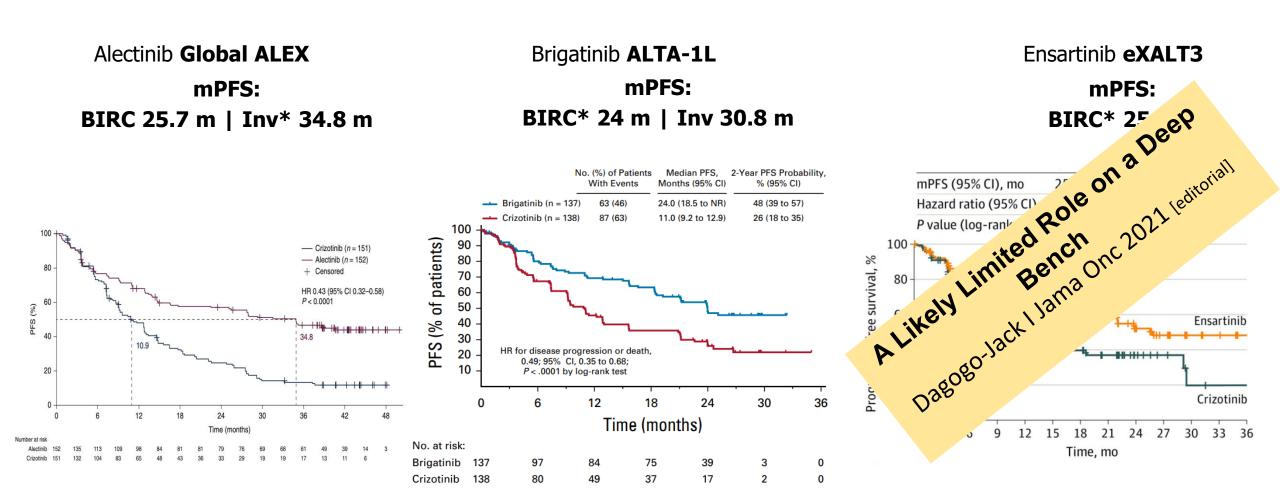

Room to improve:

- -testing
- -biology
- -resistance
- -patients selection

The evolving treatment landscape of ALK-positive NSCLC

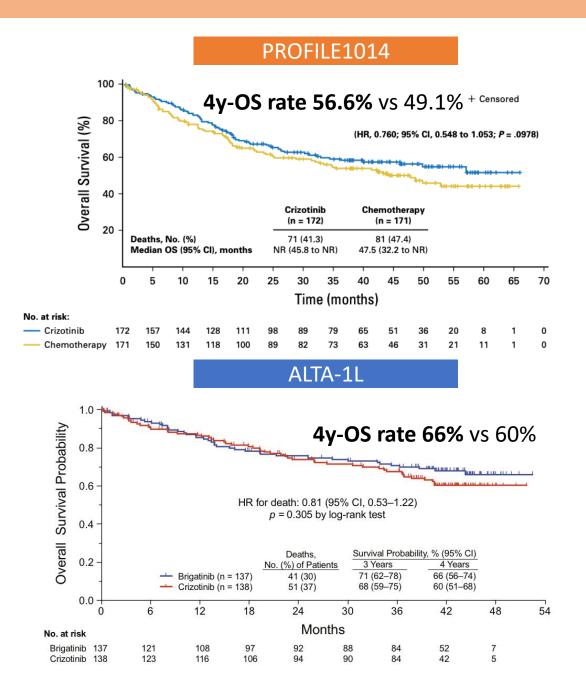

1L ALK inhibitors vs chemotherapy

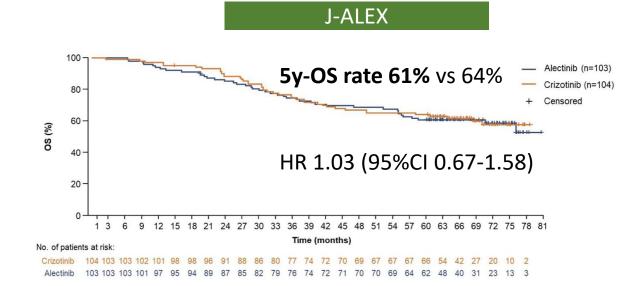
Crizotinib PROFILE1014

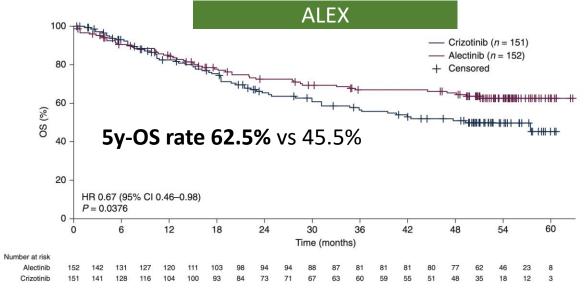


mPFS: 16.6 mos

50% risk reduction of developing disease progression

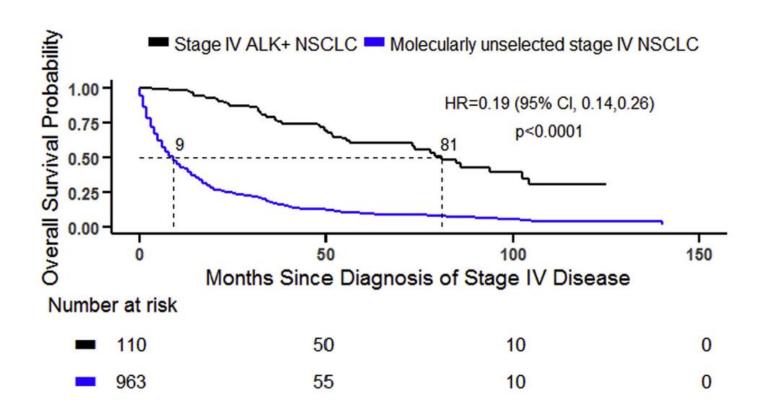

1L 2nd gen ALK inhibitors vs crizotinib




50% risk reduction of developing disease progression

^{*} Primary endpoint

1L ALK inhibitors: Landmark OS results



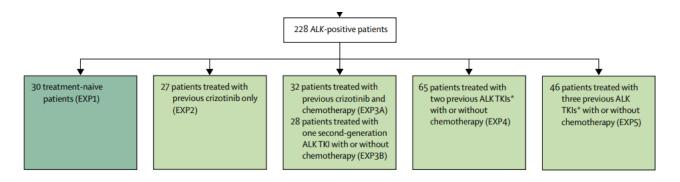
Solomon B JCO 2018, Yoshioka ASCO 2021, Mok T Ann Oncol 2020, Camidge R JTO 2021

1L ALK inhibitors: the real impact on OS

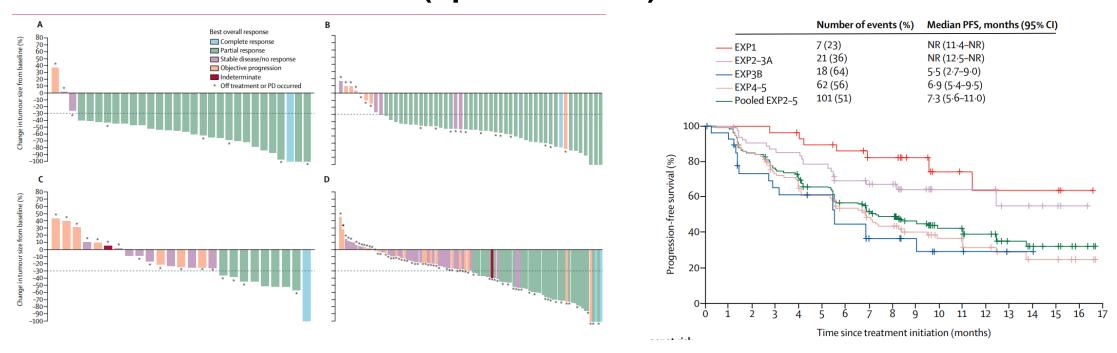
[N=110 patients with ALK-positive NSCLC compared with all patients with NSCLC diagnosed at University of Colorado Cancer Center between 2004 and November 2017]

1L ALK inhibitors: How to choose?

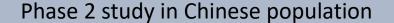
- Overall survival
- Progression free survival
- CNS activity
- Safety
- TKI sequencing
- Resistance mechanisms and biology

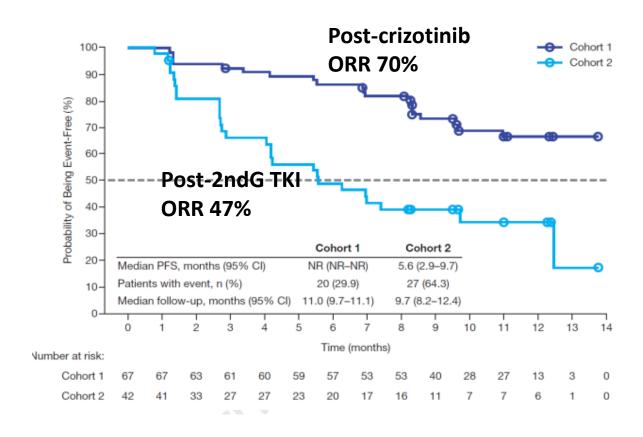

1L ALK inhibitors: CNS activity

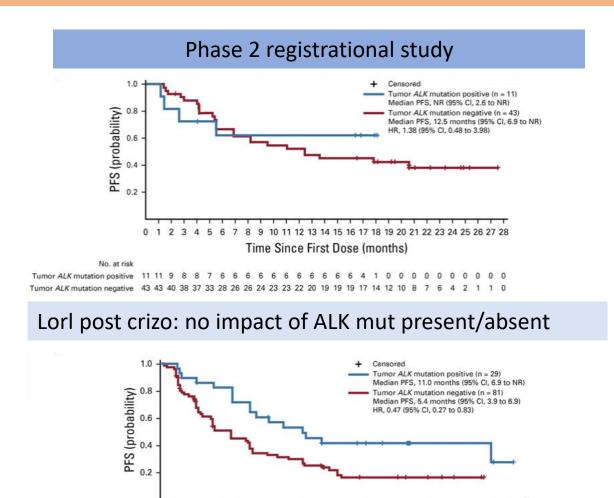
	ALTA-1L		AL	EX	eXa	alt3
	Brigatinib	Crizotinib	Alectinib	Crizotinib	Ensartinib	Crizotinib
Patients with any brain mets at baseline, n	47	49	64	58	11	19
Confirmed IC-ORR, %	66	14	59	26	64	21
Complete IC response, %	45	2	45	9	27	10.5
Median IC-DoR (95% CI), months	27.1(16.9- 42.6)	9.2(3.9- NR)	NE(17.3- NE)	3.7(3.2- 6.8)	-	-
Patients with at least 1 measurable brain mets at baseline, n	18	23	22	21	11	19
Confirmed IC-ORR, %	78	26	81	50	64	21
Complete IC response, %	28	0	38	5	27	10.5
Median IC-DoR (95% CI), months	27.9(16.9- 42.8)	9.2(3.9- NE)	17.3(14.8- NE)	5.5(2.1- 17.3)	-	-


1L ALK inhibitors: safety profile

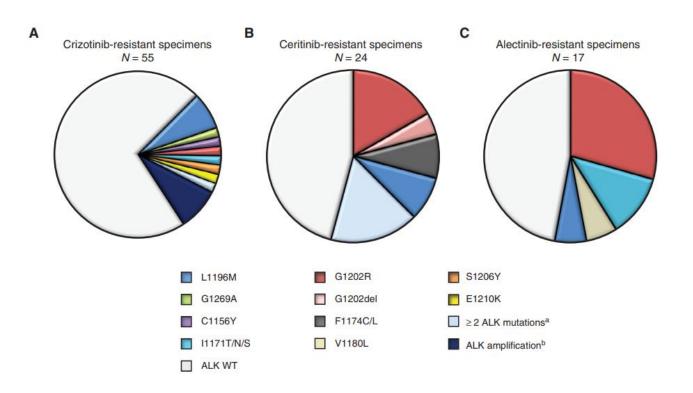
Drug (dose)	Serious TRAEs	TRAE leading to dose reduction (% pts)	TRAE leading to drug discontinuation (% pts)	TRAEs more common in study drug vs. crizotinib	Ref.
Alectinib (600mg po twice/day)	Alectinib = 28% Crizotinib = 29%	Alectinib = 16% Crizotinib = 21%	Alectinib = 11% Crizotinib = 13%	Anemia Myalgia Increased Bilirubin Increased weight Musculoskeletal pain Photosensitivity reaction	Initial Publication: Peters et al. NEJM 377;9 08/31/2017
Brigatinib (90mg po / day x 7 days, then 180mg po / day)	Brigatinib = 28% Crizotinib = 29%	Brigatinib = 28% Crizotinib = 29%	Brigatinib = 12% Crizotinib = 9%	Increased CK Cough Hypertension Increased Lipase Early onset ILD/pneumonitis	Initial Publication: Camidge et al. <i>NEJM</i> 379;21 11/22/2018
Ensartinib (225 mg po / day)	Ensartinib = 24% Crizotinib = 20%	Ensartinib = 24% Crizotinib = 20%	Ensartinib = 9% Crizotinib = 7%	Rash all grade ~70%, grade 1/2 ~60% Pruritis Pyrexia	Horn L et al. IASLC WCLC 08/08/2020


1L ALK inhibitors: TKI sequencing – role of 3rd gen Lorlatinib in ALK-inh pretreated



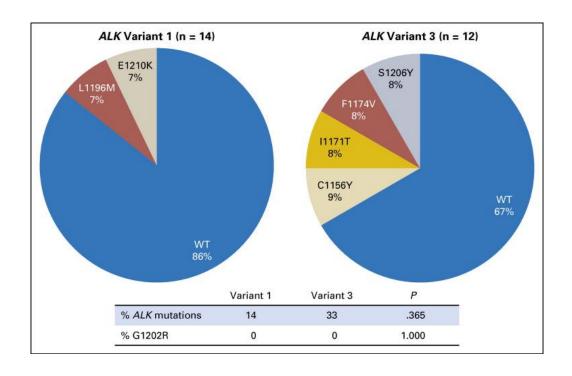

Pooled EXP2-5 (up to 3 ALK-Is) ORR 50% mPFS 7.3 mos

1L ALK inhibitors: TKI sequencing – Lorlatinib in ALK-inh pretreated according to prev TKI



Lorl post 2nd gen TKI: impact of ALK mut present/absent

Time Since First Dose (months)


1L ALK inhibitors: Resistance mechanisms – *on-target*

	Cellular ALK phosphorylation mean IC ₅₀ (nmol/L)					
Mutation status	Crizotinib	Ceritinib	Alectinib	Brigatinib	Lorlatinib	
Parental Ba/F3	763.9	885.7	890.1	2774.0	11293.8	
EML4-ALK V1	38.6	4.9	11.4	10.7	2.3	
EML4-ALK C1156Y	61.9	5.3	11.6	4.5	4.6	
<i>EML4-ALK</i> 11171N	130.1	8.2	397.7	26.1	49.0	
EML4-ALK I1171S	94.1	3.8	177.0	17.8	30.4	
EML4-ALK I1171T	51.4	1.7	33.6ª	6.1	11.5	
EML4-ALK F1174C	115.0	38.0ª	27.0	18.0	8.0	
EML4-ALK L1196M	339.0	9.3	117.6	26.5	34.0	
EML4-ALK L1198F	0.4	196.2	42.3	13.9	14.8	
EML4-ALK G1202R	381.6	124.4	706.6	129.5	49.9	
EML4-ALK G1202del	58.4	50.1	58.8	95.8	5.2	
EML4-ALK D1203N	116.3	35.3	27.9	34.6	11.1	
EML4-ALK E1210K	42.8	5.8	31.6	24.0	1.7	
EML4-ALK G1269A	117.0	0.4	25.0	ND	10.0	
EML4-ALK D1203N+F1174C	338.8	237.8	75.1	123.4	69.8	
<i>EML4-ALK</i> D1203N+E1210K	153.0	97.8	82.8	136.0	26.6	

 $IC_{50} \le 50 \text{ nmol/L}$ $IC_{50} > 50 < 200 \text{ nmol/L}$ $IC_{50} \ge 200 \text{ nmol/L}$

1L ALK inhibitors: Resistance mechanisms – *on-target by EML4-ALK variant*

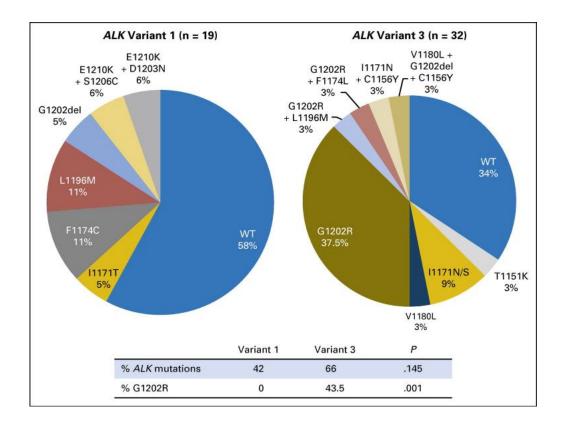
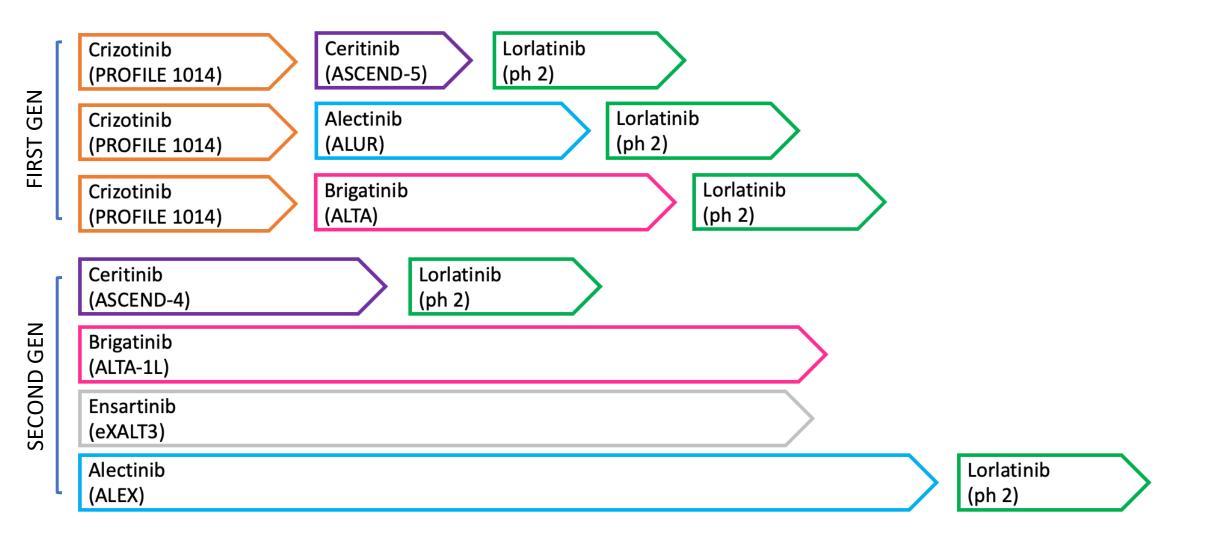
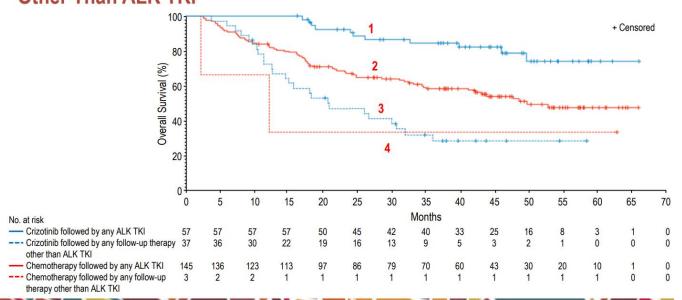



Fig 4. Distribution of ALK resistance mutations in tumor biopsy specimens obtained after disease progression on crizotinib by EML4-ALK variant. WT, wild-type ALK.

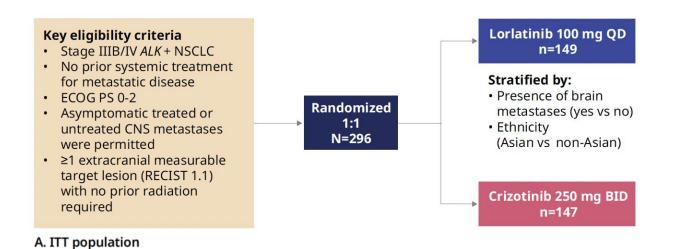
Fig 3. Distribution of ALK resistance mutations in tumor biopsy specimens obtained after disease progression on a second-generation ALK inhibitor by EML4-ALK variant. WT, wild-type (nonmutated) ALK.


1L ALK inhibitors: TKI sequencing

1L ALK inhibitors: TKI sequencing – where is the room for chemotherapy?

PROFILE1014

Impact of Subsequent Therapy on OS: ALK TKI versus Treatment Other Than ALK TKI


OS from initiation of third-line of interest of ALK + patients according to the treatment given; further ALKi (group A) or chemotherapy (group B)

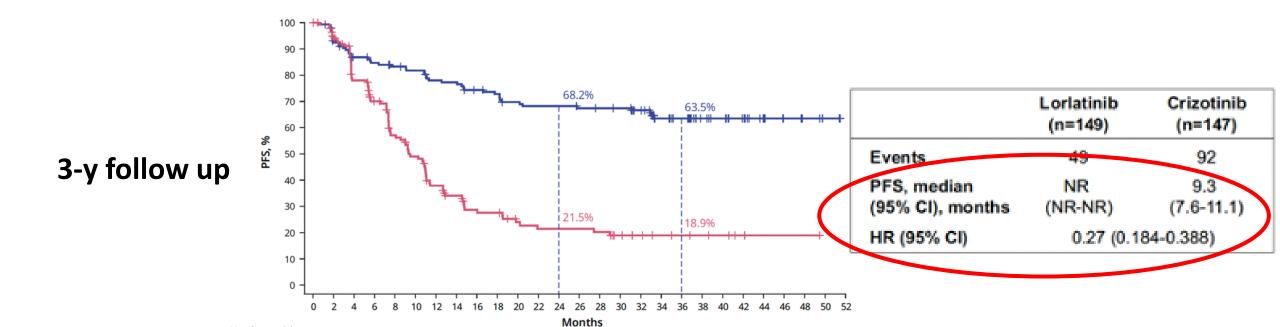
REAL-WORLD

...KEEP IT AS THE LAST OPTION

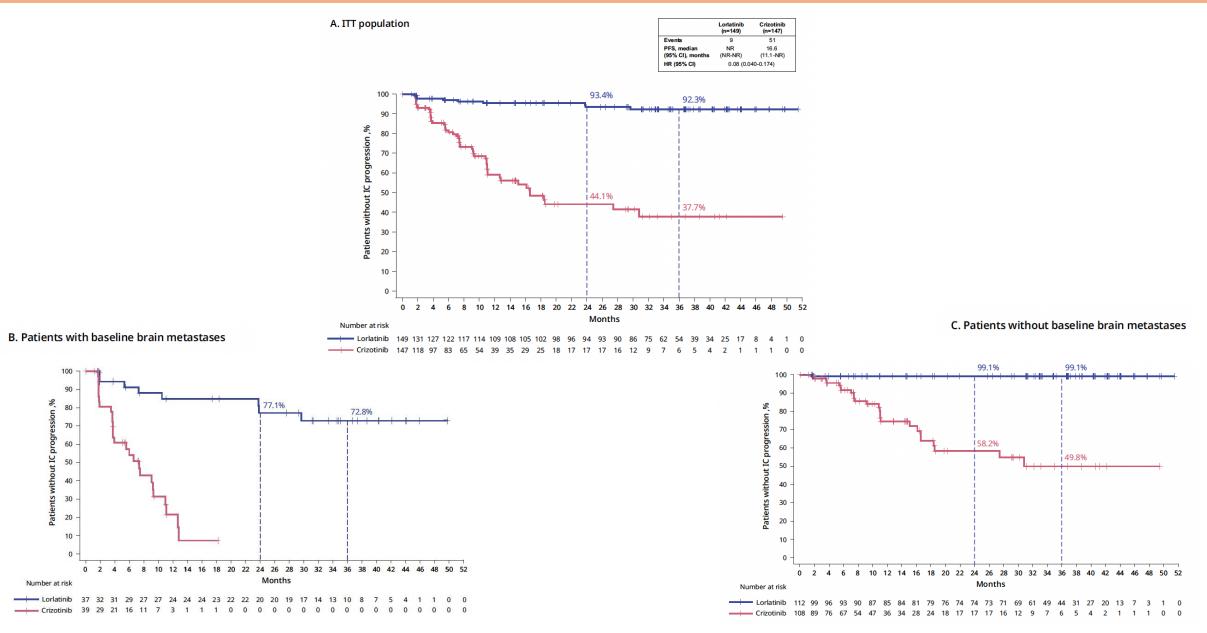
ALK-positive NSCLC in 2022: The CROWN

Number at risk

Primary endpoint


PFSa by BICR

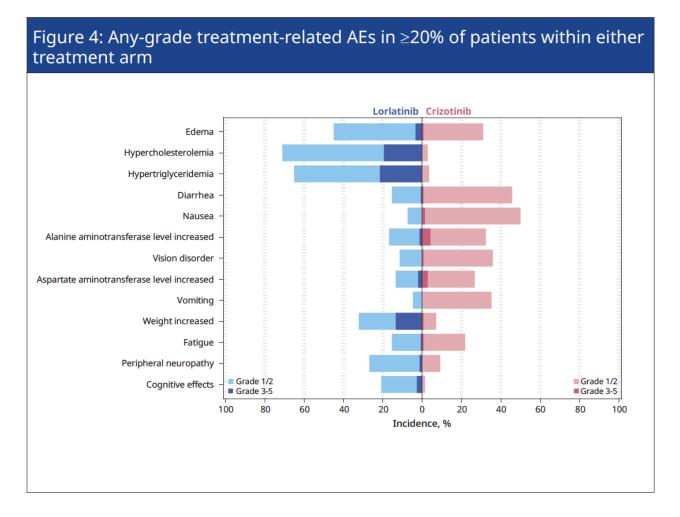
Secondary endpoints


- Overall survival
- · PFS by investigator
- ORR by BICR and investigator

Solomon BJ, Abstr #CT223 AACR22

- DOR, IC ORR, and IC DOR by BICR
- IC TTP by BICR
- TTR and IC TTR by BICR
- Safety
- Quality of life

1L Lorlatinib in ALK+ NSCLC: IC progression


1L ALK inhibitors: CNS activity

	ALT	4-1L	AL	.EX	eXa	alt3	CRO	OWN
	Brigatinib	Crizotinib	Alectinib	Crizotinib	Ensartinib	Crizotinib	Lorlatinib	Crizotinib
Patients with any brain mets at baseline, n	47	49	64	58	11	19	37	39
Confirmed IC-ORR, %	66	14	59	26	64	21	64.9	17.9
Complete IC response, %	45	2	45	9	27	10.5	59.5	12.8
Median IC-DoR (95% CI), months	27.1(16.9- 42.6)	9.2(3.9- NR)	NE(17.3- NE)	3.7(3.2- 6.8)	-	-	NR(NR- NR)	9.4 (6.0- 11.1)
Patients with at least 1 measurable brain mets at baseline, n	18	23	22	21	11	19	18	13
Confirmed IC-ORR, %	78	26	81	50	64	21	83.3	23.1
Complete IC response, %	28	0	38	5	27	10.5	72.2	7.7
Median IC-DoR (95% CI), months	27.9(16.9- 42.8)	9.2(3.9- NE)	17.3(14.8- NE)	5.5(2.1- 17.3)	-	-	NR(NR- NR)	10.2(9.4- 11.1)

1L ALK inhibitors: safety profile

Table 2: Summary of AEs					
	n (%)			
	Lorlatinib (n=149)	Crizotinib (n=142)			
Any-grade AE	149 (100.0)	140 (98.6)			
Treatment related	145 (97.3)	133 (93.7)			
Grade 3/4 AE	113 (75.8)	81 (57.0)			
Treatment related	94 (63.1)	54 (38.0)			
Death	10 (6.7)	7 (4.9)			
Treatment related	2 (1.3)	0			
Any serious AE	57 (38.3)	44 (31.0)			
Treatment related	13 (8.7)	9 (6.3)			
AEs leading to dose reduction	32 (21.5)	21 (14.8)			
AEs leading to temporary discontinuations	84 (56.4)	69 (48.6)			
AEs leading to permanent treatment discontinuation	11 (7.4)	14 (9.9)			

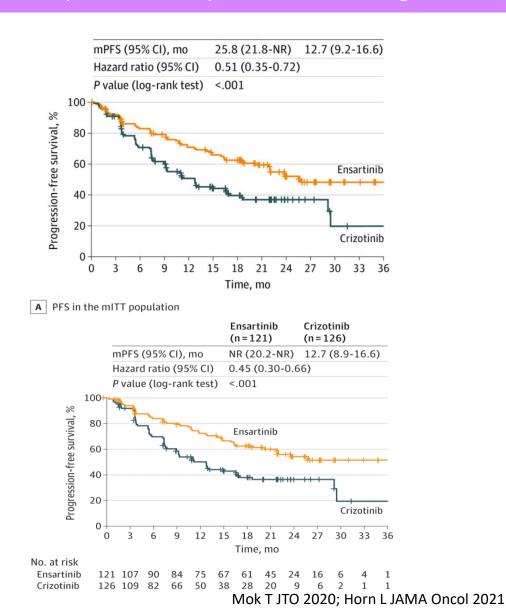
- -The incidence of treatment-related grade 3/4 AEs in the lorlatinib arm was largely due to frequent occurrence of altered lipid levels such as hypercholesterolemia and hypertriglyceridemia (Figure 4)
- Treatment-related cognitive effects occurred in 20.8% of patients in the lorlatinib arm; however, most (27 of 31) cognitive effects were grade 1/2 and no grade 4 event was observed
- AEs leading to permanent treatment discontinuation were reported in 7.4% of patients in the lorlatinib arm and 9.9% in the crizotinib arm

1L ALK inhibitors: TKI sequencing

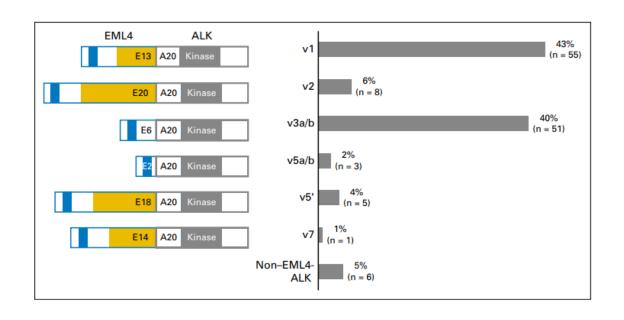
Agenzia Italiana del Farmaco

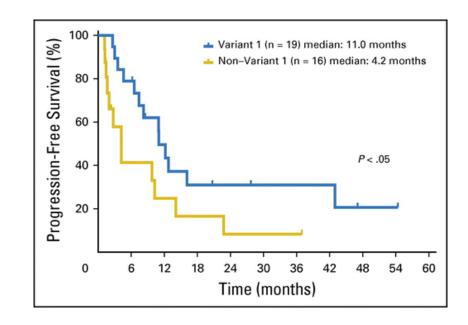
Lorlatinib come monoterapia è indicato per il trattamento di pazienti adulti affetti da cancro del polmone non a piccole cellule (Non-small Cell Lung Cancer, NSCLC) in stadio avanzato positivo per la chinasi del linfoma anaplatico (Alk) la cui malattia è PROGREDITA dopo:

- Alectinib o ceritinib come terapia di prima linea con un inibitore della tirosin chinasi (TKI) ALK;
- Oppure crizotinib e almeno un altro TKI ALK


1L treatment of ALK+ NSCLC: how to improve? – TESTING

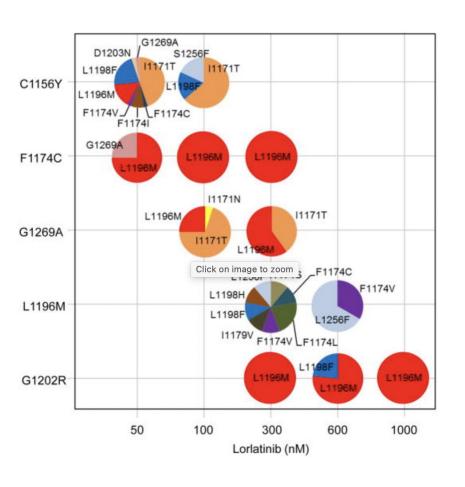
ALEX: 39 pts FISH neg


ORR	Alectinib	Crizotinib	Stratified OR (95% CI)
ALK IHC-positive and FISH-positive	n = 106	n = 97	_
ORR, n (%)	96 (90.6)	79 (81.4)	2.22 (0.97-5.07)
CR	6 (5.7)	3 (3.1)	_
PR	90 (84.9)	76 (78.4)	_
SD	4 (3.8)	14 (14.4)	_
PD	2 (1.9)	3 (3.1)	_
Missing or unassessable	4 (3.8)	1 (1.0)	_
ALK IHC-positive and FISH-uninformative ^a	n = 25	n = 36	_
ORR, n (%)	24 (96.0)	27 (75.0)	9.29 (1.05-81.88)
CR	0	0	_
PR	24 (96.0)	27 (75.0)	_
SD	0	5 (13.9)	_
PD	0	3 (8.3)	_
lissing or unaccessable	1 (1.0)	1 (2.0)	
ALK IHC-positive and FISH-negative	n = 21	n = 18	_
ORR, n (%)	6 (28.6)	8 (44.4)	0.45 (0.12-1.74)
CR	1 (4.8)	0	_
PR	5 (23.8)	8 (44.4)	_
SD	5 (23.8)	5 (27.8)	_
PD	6 (28.6)	4 (22.2)	
Missing or unassessable	4 (19.0)	1 (5.6)	_


DoR	Alectinib	Crizotinib
ALK IHC-positive and FISH-positive	n = 106	n = 97
Median DoR, mo (95% CI)	33.1 (31.3-NE)	11.1 (7.4-14.7
Stratified HR (95% CI)	0.34 (0.22-0.53), p < 0.0001	
ALK IHC-positive and FISH-uninformative ^a	n = 25	n = 36
Median DoR, mo (95% CI)	26.1 (9.4-NE)	9.1 (6.6-12.9)
Stratifical HD (25% CI)	0.37 (0.17 0.00), p = 0.0007	, ,
ALK IHC-positive and FISH-negative	n = 21	n = 18
Median DoR, mo (95% CI)	NE (NE)	NE (7.4-NE)
Stratified HR (95% CI)	0.24 (0.02-2.62), p = 0.2181	, ,

eXALT3: 43 pts excluded by central FISH testing in mITT

1L treatment of ALK+ NSCLC: how to improve? – Role of ALK variants

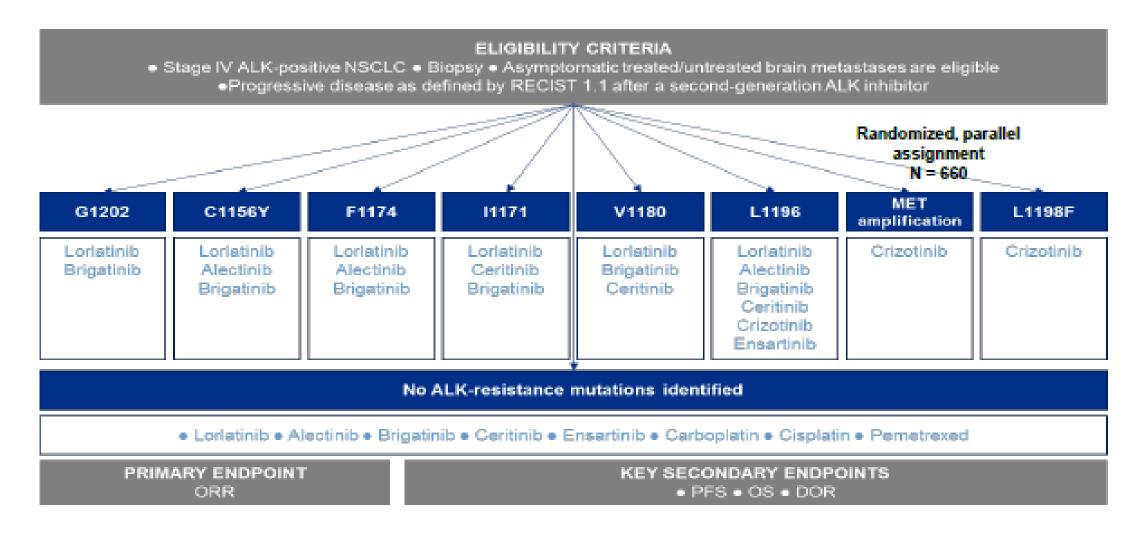

ALTA-1L

Efficacy of brigatinib in pts with V1, V2, V3 (plasma NGS, n=250 pts):
 ORR higher in all three variants
 mPFS 29 m V1, 16 m V2 and V3

ALEX

■ EMLA4-ALK variants were detectable in 135/222 patient plasma samples and 124/203 tissue samples (NGS): PFS was longer for alectinib than for crizotinib across EML4-ALK V1,V2 V3

1L treatment of ALK+ NSCLC: Lorlatinib resistance



Acquired sequential resistance mutations

- More frequent ALK compound mutations after lorlatinib than after second gen TKIs (48% vs 23%)
- Plasma samples more informative to detect compound mutations (24% vs 2% in tissue samples)
- → New compounds in development to target ALK compound mutations

1L treatment of ALK+ NSCLC: how to improve? – the ALK MASTER Protocol

A Phase II study biomarker-driven protocol for previously treated ALK-positive NSCLC patients

1L treatment of ALK+ NSCLC: how to improve? – *combos*

Immune Checkpoint Inhibitors + ALK TKI

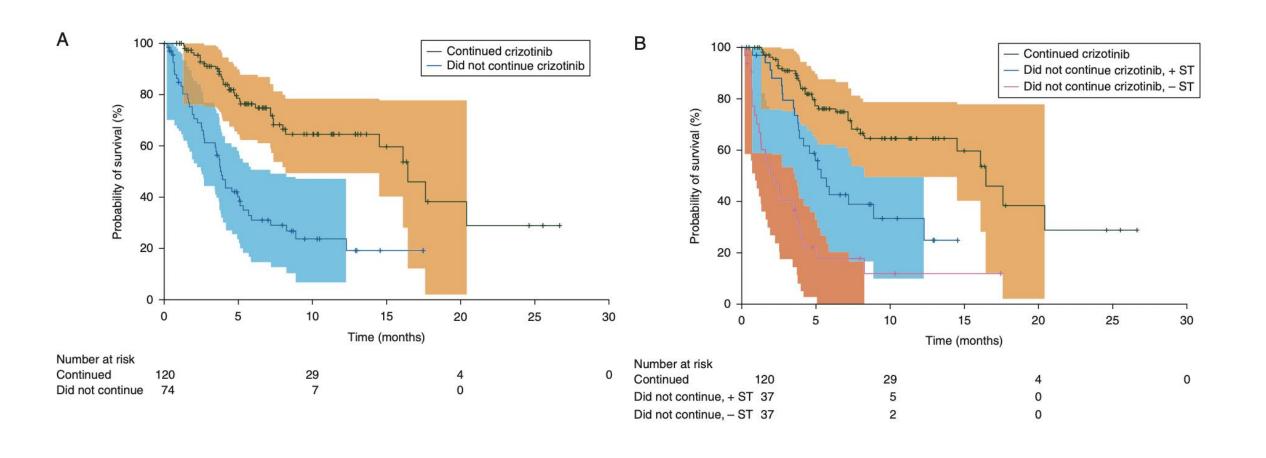
Trial	Drugs	Cohort	ORR (dose exp)	Gr≥ 3 TRAE (safety & dose exp)
Checkmate 370 (NCT02574078) Spigel D et al. JTO 2018; 13	Crizotinib Nivolumab	ALK+ / TKI naïve	38%	62% - 38% hepatitis (15% gr 5) - 7% pneumonitis
NCT0251184 Patel S et al. Oncologist 2020;25	Crizotinib Pembrolizumab	ALK+ / TKI naïve	Terminated early 9 pts enrolled	- 3/9 pts with grade 3 transaminitis - 1/9 pts with grade 4 pneumonitis

VEGFR inhibitors + ALK TKI

Target	Drug	Trial
VEGF-A	Bevacizumab (+ Alectinib) Bevacizumab (+Atezolizumab + Carboplatin + Paclitaxel)	NCT02521051 NCT03991403

Targeted Therapies + ALK TKI

Target	Drug	Trial
MEK	Combimetinib (+alectinib) Trametinib (+ceritinib) Binimetinib (+lorlatinib)	NCT03202940 NCT03087448 NCT04292119
HSP90	Ganetespib (+crizotinib) AUY922 (+ceritinib)	NCT01579994 NCT01772797
CDK 4/6	Ribociclib (+ceritinib)	NCT02292550
MET	Crizotinib (+lorlatinib)	NCT04292119
SHP2	TNO155	NCT03114319 - phase 1 includes EGFR and KRAS (ALK hopefully soon?)


Chemotherapy + ALK TKI

...Not yet the time for combos

^{*} This slide is not a comprehensive list of all studies *

1L treatment of ALK+ NSCLC: do not forget the basements

Treatment beyond progression & Locoregional approaches

Final remarks

- ALK rearreanged NSCLC: to date our favourite story
- Current treatment landscape include 1L second/third gen ALK TKIs
- Lorlatinib PFS results (CROWN trial) might revert the current TKI sequencing approach
- Treatment selection: duration of benefit, CNS activity, toxicity profile/long-term side
 effects
- Patients' selection at disease progression: patterns of relapse, resistance mechanisms