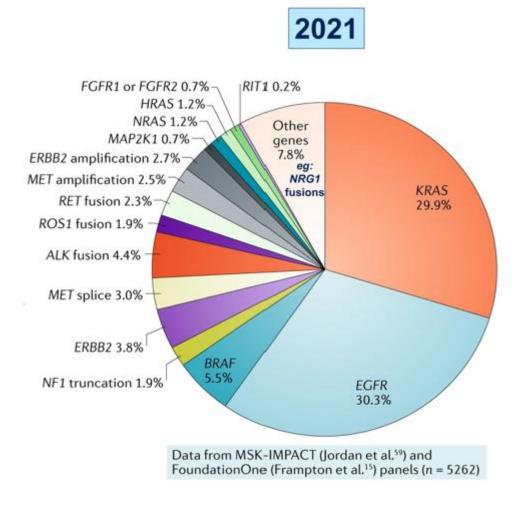
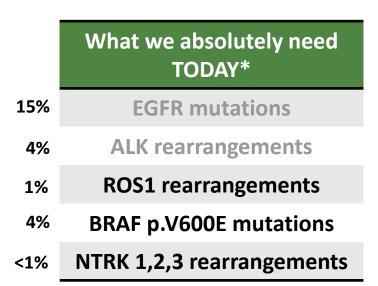


Il trattamento della malattia con alterazioni di BRAF, ROS1 o RET e altri target emergenti

Sara Pilotto

Oncologia Medica, Dipart. di Medicina, Università di Verona, A.O.U.I. Verona sara.pilotto@univr.it

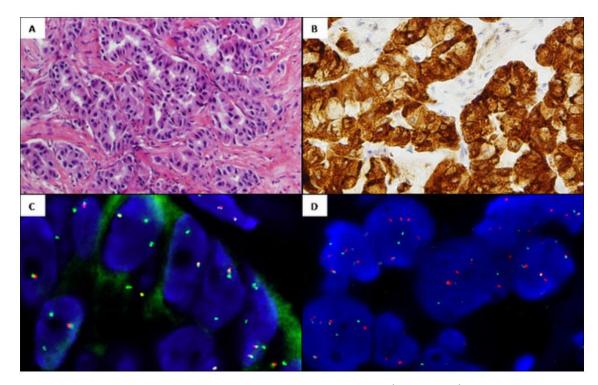




Disclosures

Commercial Interest	Relationship(s)			
AstraZeneca	Speaker's Bureau, Consultant, Research Funding			
Merck&Co	Advisory Board, Speaker's Bureau, Consultant			
Boehringer Ingelheim	Speaker's Bureau, Consultant			
BMS	Speaker's Bureau, Consultant, Research Funding			
Roche	Advisory Board, Speaker's Bureau, Consultant			
AMGEN	Advisory Board, Consultant			
Novartis	Advisory Board, Consultant			

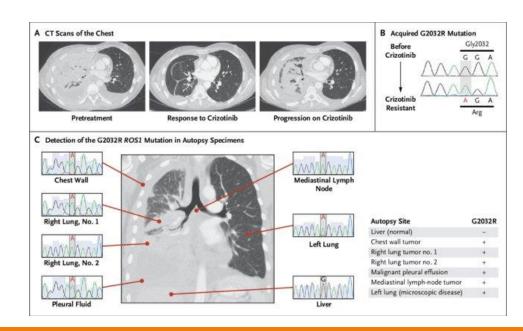
Precision Therapy for non-squamous (for now) NSCLC in 2021/2022

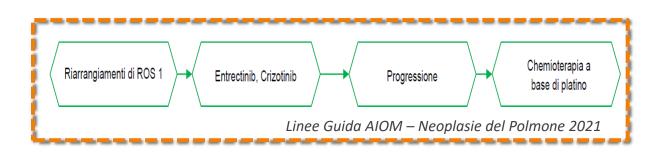

^{*} In metastatic non-squamous NSCLC (before 1° line initiation) - in Italy

proposito, in tutti i pazienti con NSCLC in stadio IIIB-IIIC (non candidati a trattamenti loco-regionali), e IV, risulta raccomandato completare la diagnosi morfologica (di cui sopra) con la caratterizzazione delle mutazioni in EGFR (Epidermal Growth Factor Receptor) e BRAF (B-Raf proto-oncogene), la definizione delle traslocazioni a carico di ALK (Anaplaste Lymphoma Kinase), ROS-1 (Proto-oncogene tyrosine-protein kinase ROS) e NTRK 1,2 e 3 (Neurotrophic Tyrosine Receptor Kinase) e la valutazione dei livelli di espressione del PD-L1 (Programmed-death ligand 1) (secondo i cut – off validati dagli studi

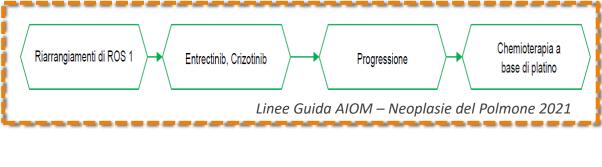
ROS1 rearrangements: do not forget this rare target!

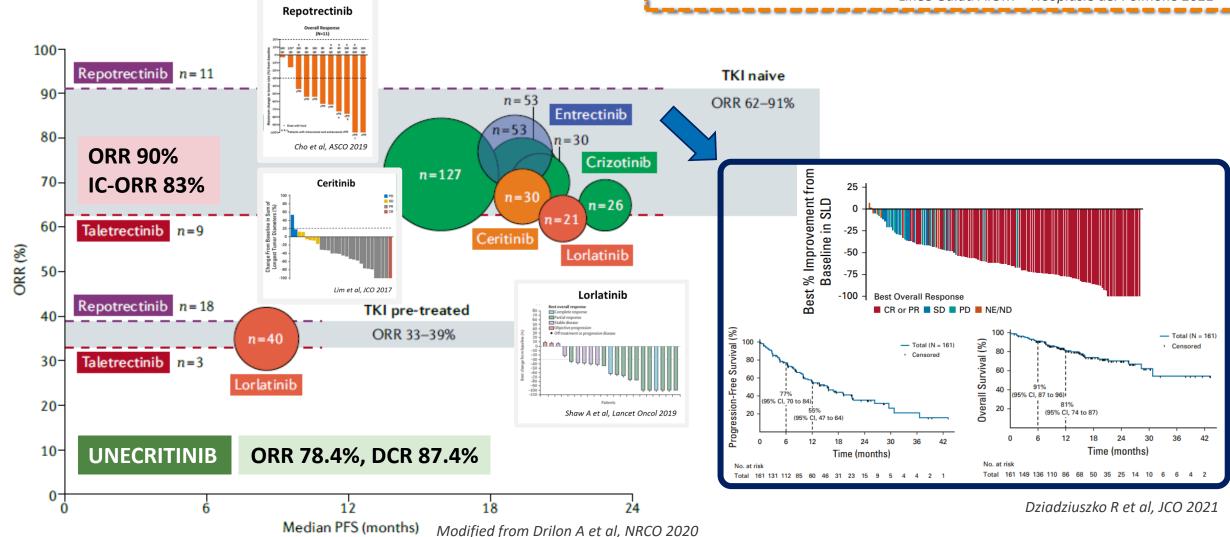
- Seen in 0.9% 2% of lung adenocarcinoma
- Typically associated with younger age (average 50y), never/light smoking history, adenocarcinoma subtype

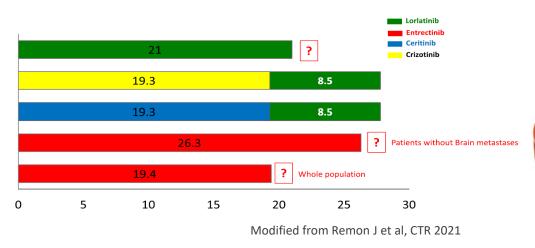

Clave S et al, Oncotarget 2016

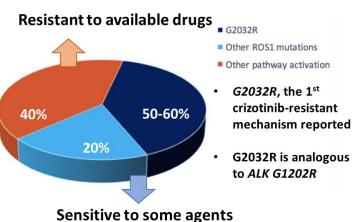

ROS1 rearrangements: crizotinib, a (EX?) standard of care

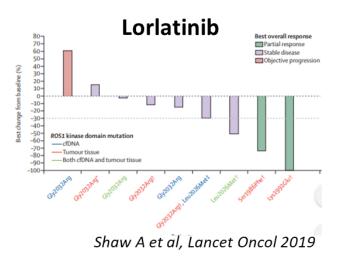
Study	Phase	Patients, No.	ORR, %	DCR, %	mPFS, Months	mOS, Months
PROFILE 1001 ^{12,30}	1/11	53	72	90	19.3	51.4
Phase II East Asian Study ³¹	II	127	71.7	88.2	15.9	12-month rate, 83.1%
EUCROSS ³²	II	30	70	90	20	NR (12-month rate, 83%)
AcSé ³³	II	37	69.4	69.4	5.5	17.2
METROS ³⁴	II	26	65	85	22.8	NR
EUROS1 ¹¹	Retrospective	30	80	86.6	9.1	NR
ROS1 Fusion Partners ³⁵	Retrospective	49	83.3	97.2	12.6	32.7
Pemetrexed study ³⁶	Retrospective	15	80	90	9.6	NA


- On-target resistance mutations (G2032R)
- CNS progression

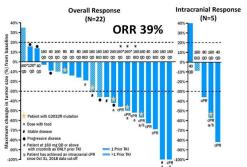


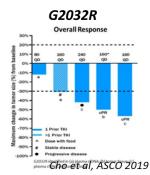



ROS1 rearrangements: a changing (overcrowded) landscape

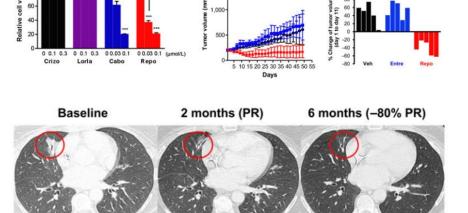


How do we best sequence?? [yesterday, today and tomorrow]

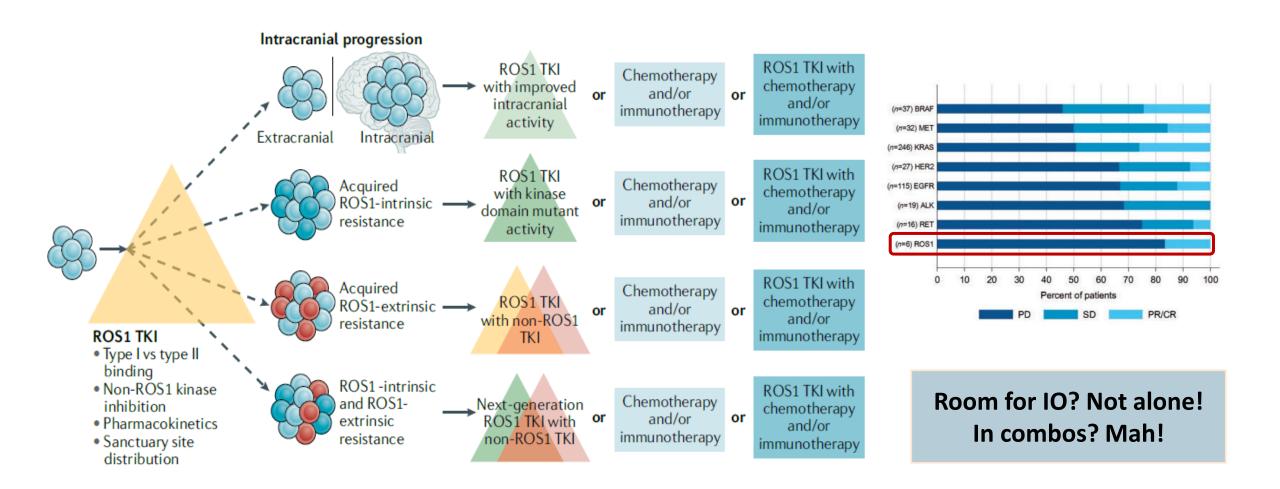




Repotrectinib showed selective and potent in vitro and in vivo activity against ROS1 G2032R


Repotrectinib

Yun MR et al, Clin Cancer Res 2020


Programm diament of the programm of the progra

Baseline (blood/tumor) best response PF-001-002 SLC34A2-ROS1, G2032R, TP53 PF-001-003 EZR-ROS1, TP53 PF-001-004 SDC4-ROS1, G2032R, TP53 PD PF-001-005 SDC4-ROS1, G2032R, TP53 PD PF-001-006 SDC4-ROS1, TP53 PF-001-007 CD74-ROS1, G2032R PD PF-001-013 MTOR PD PF-001-008 EZR-ROS1, S1861I, TP53 PR PF-001-011 SLC34A2-ROS1 PF-001-018 LRIG3-ROS1, V2054A, TP53 PF-001-009 intergenic-ROS1, TP53 PF-001-020 TSC PF-001-010 none PF-001-012 nil sample PF-001-015 none PF-001-014 CD74-ROS1, TP53

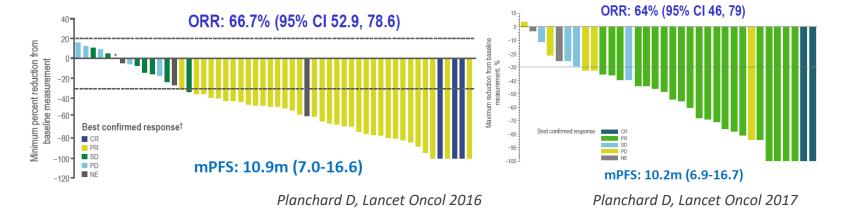
Landi L, WCLC 2019, ESMO 2019

How do we best sequence?? [yesterday, today and tomorrow]

BRAF p.600E mutation: an established SoC

Mutazioni di BRAF-V600

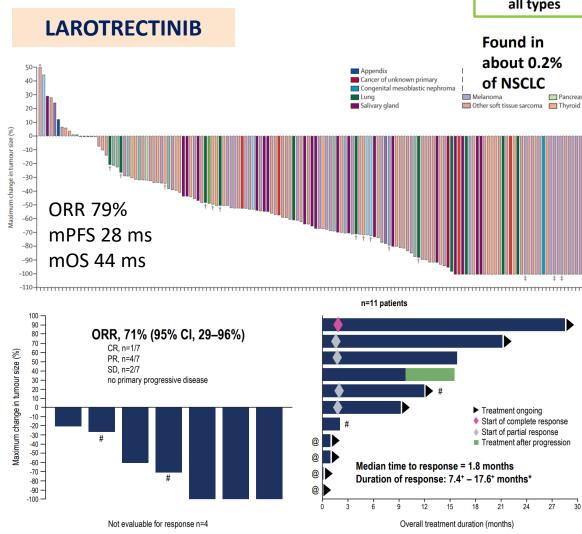
Dabrafenib + Trametinib


Progressione

Chemioterapia a base di platino

Linee Guida AIOM — Neoplasie del Polmone 2021

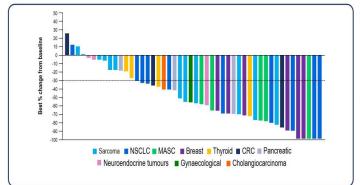
- BRAF mutations present in **2% 4%** of NSCLC (½ BRAF V600E or class 1 BRAF mutations)
- V600E: mainly female (~ 60%), current/former smokers (never smokers ~ 30%)
- Non-V600E: mainly male and almost exclusively current/former smokers
- Potential mechanism of resistance in EGFR-mutated NSCLC (ositreated 3-10%)


		Treatment Naive			
	VE-Basket trial vemurafenib (n=20)	AcSé trial vemurafenib (n=100)	BRF113928 dabrafenib (n = 78)	BRF113928 Dabrafenib Plus Trametinib (n = 57)	BRF113928 Dabrafenib Plus Trametinib (n = 36)
Male	14 (70%)	-	39 (50%)	29 (51%)	14 (39%)
Never smoker	7 (35%)	-	29 (37%)	16 (28%)	10 (28%)
ORR % (95% CI)	42 (20-67)	44.9	33 (23–45)	67 (53–79)	64 (46-79)
PFS, median (95% CI)	7.3 (3.5-10.8)	5.2	5.5 (3.4–7.3)	10.2 (6.9–16.7)	10.9 (7.0-16.6)
OS, median (95% CI)	NA	9.3	12.7 (7.3–16.3)	18.2 (14.3-NE)	24.6 (12.3-NE)

NTRK 1,2,3 rearrangements

NTRK fusions are rare events: 0.21% across 11,116 patients with tumors of all types

Hong D et al, Lancet Oncol 2020

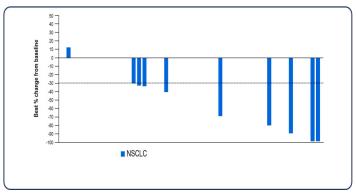

Riarrangiamenti di NTRK

Entrectinib, Larotrectinib

Progressione

Chemioterapia a base di platino

Linee Guida AIOM — Neoplasie del Polmone 2021



Efficacy outcomes	NTRK+ patients (n=54)
ORR,* %	57.4 (95% CI: 43.2–70.8)
CR,* n (%)	4 (7.4)
Median DOR,* months	10.4 (95% CI 7.1–NR)
Median PFS,* months	11.2 (95% CI 8.0–14.9)
Median OS, months	20.9 (95% CI 14.9–NR)

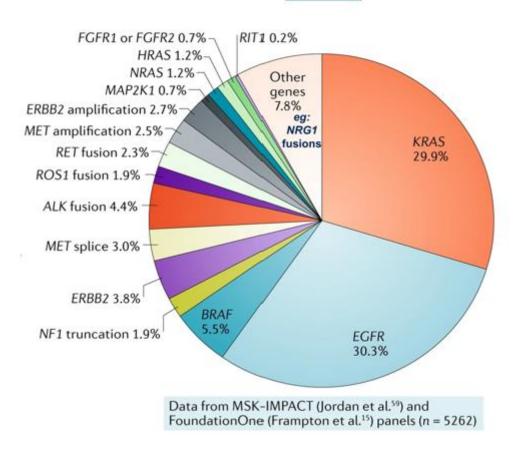
NTRK+ patients ORR* 57.4%

NTRK+ NSCLC

Data cut-off date: 31 May 2018. Note: Patients (n=6) without matched pre/post therapy scans were excluded from the plot

Efficacy outcomes	patients (n=10)
ORR,* %	70.0 (95% CI: 34.75–93.33)
CR,* n (%)	1 (10)
PR,* n (%)	6 (60)
SD,* n (%)	1 (10)
Median DOR,* months	NE (95% CI 10.4-NE)
Median PFS,* months	14.9 (95% CI 4.7-NE)

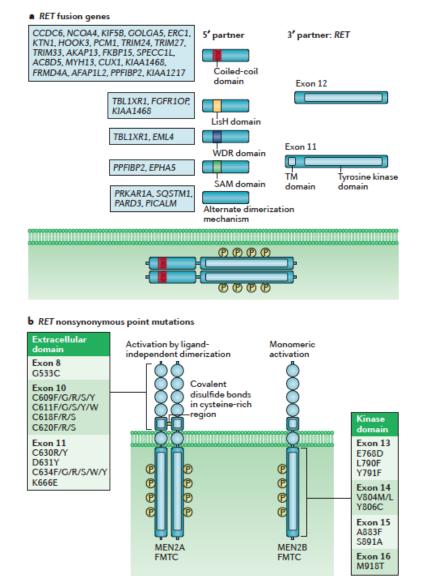
 $\label{eq:decomposition} Data \ cut-off \ date: 31 \ May \ 2018. \ Note: Patients \ (n=6) \ without \ matched \ pre/post \ therapy \ scans \ were \ excluded \ from \ the \ plot. \ ^*By \ blinded \ independent \ central \ review$

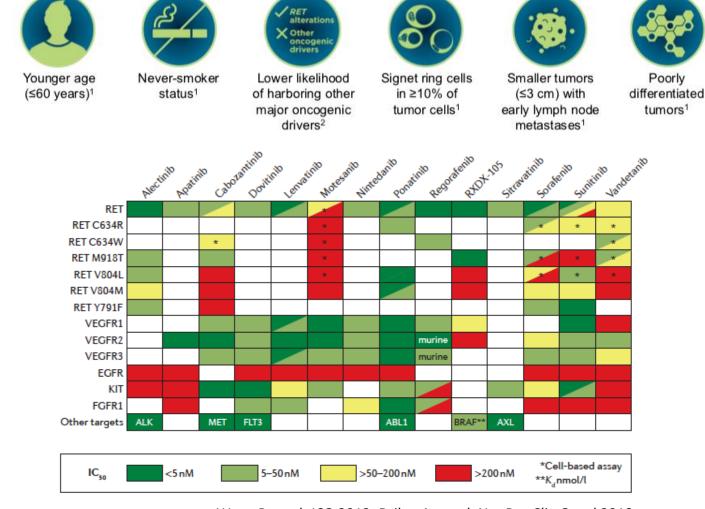

NTRK+ NSCLC patients with CNS disease at

Doebele RC et al, Lancet Oncol 2020

ENTRECTINIB

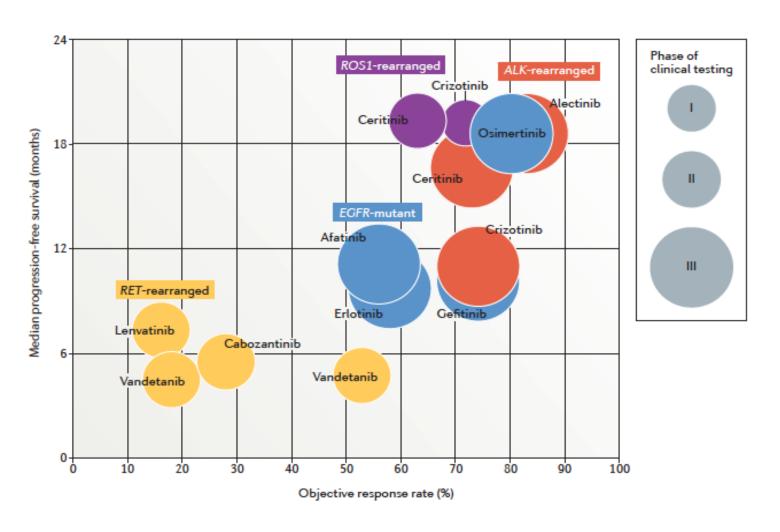
Precision Therapy for non-squamous (for now) NSCLC in 2021/2022

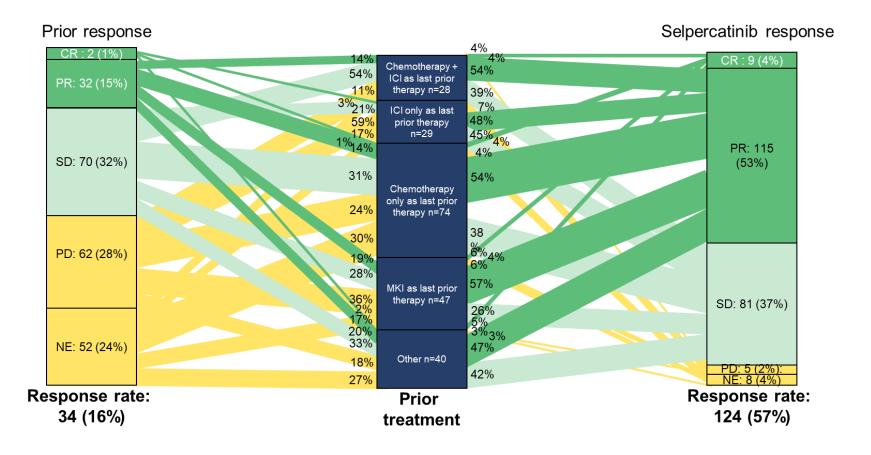




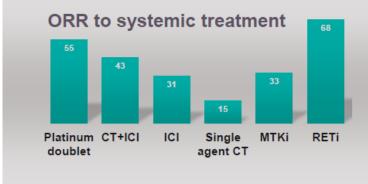
	What we absolutely need TODAY*	What we (also) need TODAY	
15%	EGFR mutations	RET rearrangements	1-2%
4%	ALK rearrangements	MET ex 14 mutations	3-4%
1%	ROS1 rearrangements	HER2 mutations	2-4%
4%	BRAF p.V600E mutations	KRAS p.G12C mutations	13%
<1%	NTRK 1,2,3 rearrangements		_
'		'	

^{*} In metastatic non-squamous NSCLC (before 1° line initiation) - in Italy


RET rearrangements: the next big target...

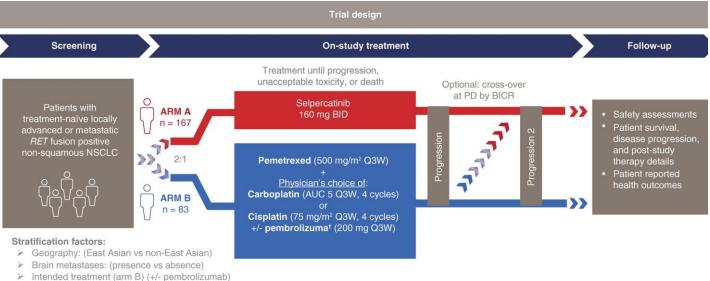


Wang R, et al. JCO 2012; Drilon A, et al. Nat Rev Clin Oncol 2018


RET rearrangements as the next big target: Are we sure??

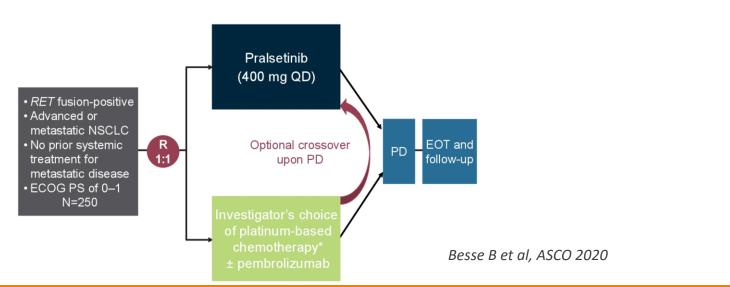
Systemic therapy in *RET* rearranged NSCLC

Patients' characteristics	N = 149
Median age (range)	61.9 (53-69.6)
Female sex (%)	87 (58.4)
Smoking history (%)	67 (45)
Adenocarcinoma histology (%)	138 (92.5)
Median number of lines (IQR)	2 (1-3)

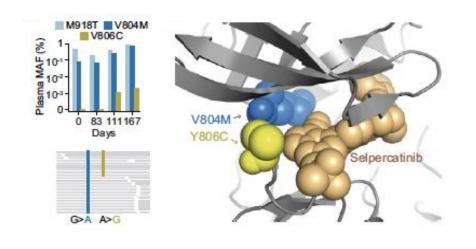

RET rearrangements: two guest Stars!!

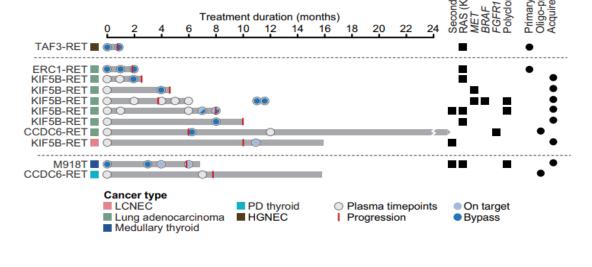
	SELPERCATINIB	PRALSETINIB
	[LIBRETTO-001]	[ARROW]
	Drilon A. et al ELCC 2022	Curigliano G. et al ASCO 2021
ORR (%, N)		
Prior platinum-based chemotherapy	61% (n = 247)	62% (n = 126)
Treatment-naïve	84% (n = 68)	88% (n = 25) ³
DCR (%, N)		
Prior platinum-based chemotherapy	94% (n = 218) ¹	91% (n = 126)
Treatment-naïve	93% (n = 48)	96% (n = 25) ³
mPFS (months, N)		
Prior platinum-based chemotherapy	24.9 (n = 247)	16.5 (n = 136)
Treatment-naïve	22.0 (n = 68)	NR
Grade ≥3 TRAEs occurring in ≥ 10% of patients (%, N)	Hypertension 12.1% (n = 746) ²	Neutropenia 19%, anemia 13%, hypertension 12% (n = 471) ⁴
Discontinuation rate (%, N) Of the 26 patients with measurable CNS a confirmed best response of CR or PR	2% (n = 746) ²	6% (n = 471) ⁴
CNS response	CNS ORR 85%	

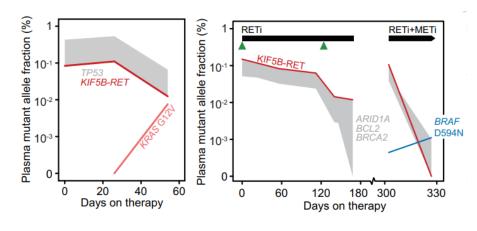
Belluomini L et al, SUBMITTED

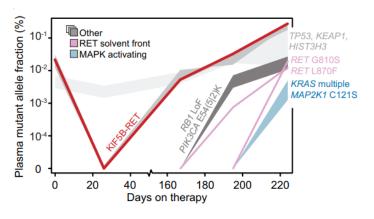

RET rearrangements: phase 3 trials are ongoing in 1st line

LIBRETTO-431

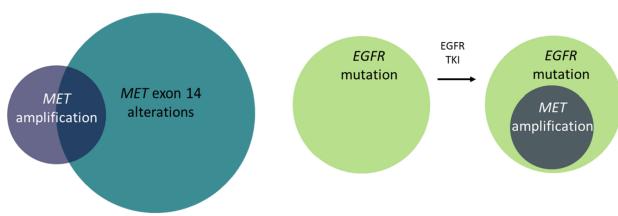



AcceleRET


Solomon B et al, Future Oncol 2021



Mechanisms of acquired resistance to RETi



- Acquired selpercatinib resistance is driven by MAPK pathway reactivation, on- and off-target pathway reactivation via secondary RET mutations or MET amplifications
- Multiple distinct mechanisms are often observed in the same patient (polyclonal resistance)

MET alterations: still a diagnostic challenge but...

MET as a secondary/co-driver

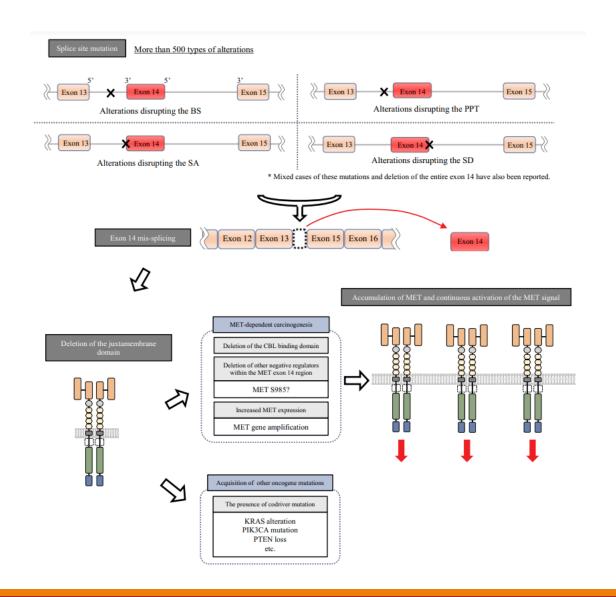
	Lu S,	Paik PK,	Drilon A,	Wolf J,
	ASCO 2020	NEJM 2020	Nat Med 2020	ASCO 2021
METex14	-RT-PCR -NGS Geneseeq Tetradecan Panel	-NGS Guardant 360 (cfDNA) -NGS Oncomine Focus Assay (tissue)	-RT-PCR -NGS, DNA or RNA-based (different panels)	-RT-PCR -NGS FoundationONE CDx

- MET exon 14 skipping mutation on tissue, blood, both
 - DNA or RNA NGS
 - RT-qPCR
 - Sanger sequencing

A MET	3%	B MET Kinase	2%	D MET
Physiologic signaling	Exon 14 skipping	domain mutations	amplification	Fusions
CBL binds to the juxtamembrane domain	Loss of Juxtamembrane Domain Impaired degradation Extended signaling	Mutations v1070F/R v1092F v1092F H11240 H11240 H11247 C1195F/V F1200 V1228H/N v1230C/D/H S1236R	Increased MET expression and oncogenic signaling	Fusion Partners TPR HIA-DRB KIFSB STARD3N ST7
mRNA Exon 13 Point mutations and deletions in splicing regulatory sites	Exon 15 MET exon 14 skipping Exon 14	L1250T V1260L V1268T/I Constitutive Kinase Domain Activation	MET focal amplification Polysomy or copy number gain MET/CEP7 Ratio high # MET/CEP7 Ratio low	Ligand independen dimerization and kinase activation
Exon 13 Intron 13	14 X Exon 15	Downstream signalling		Downstream signalling

concomitant MET ex14 mutations and MET amplifications may occur

						2.0			
_	N/I	-	am	n	liti	Ca	tı	0	r
•	IVI		an			Ca	u	v	


- FISH
- NGS

Optimal copy number cut off tbd Liquid biopsy: sensitivity, specificity

	Le X, ASCO 2021	Camidge R, JTO 2020	Wolf J, NEJM 2020
MET ampl	-NGS Guardant 360 (cfDNA): GCN ≥2.5	 FISH: MET/CEP7 ≥1.8 NGS FoundationONE CDx (tissue): GCN ≥6 	-NGS FoundationONE CDx (tissue): GCN <u>></u> 6

Modified from Drilon A and Pasello G, ASCO 2021

MET exon 14 skipping mutations

Up to 4% of non-squamous NSCLCs

- older patients, more smokers
- sarcomatoid tumour
- highly heterogeneous
- up to 20% with concurrent MET amplification

... we finally MET the right combo target-drugs

MET exon 14sk	N of patients	Line of treatment	RR (%)	DOR (months)	icRR (%)	PFS (months)	OS (months)	TR-AEs discontinuation
CRIZOTINIB	65	1 >1	25 36.6	9.1 (overall)	20 [§]	7.3 (overall)	20.5 (overall)	7%
CAPMATINIB	63	1 2	65.6 51.6	12.6 9.7	54	10.8 6.9	20.8* 13.6*	11%
TEPOTINIB	152	1 >1	43 43	10.8 11.1	55	8.5 (overall)	17.1 (overall)	11%
SAVOLITINIB	70	1 >1	54.4 46	6.8 NR	NA	5.6 13.8	NA	14.3%

MET de novo amplification	N of patients	Line of treatment	RR (%)	DOR (months)	PFS (months)	OS (months)	TR-AEs discontinuation
CRIZOTINIB	21	≥1	38.1	5.2	6.7	11.4	10.5%
CAPMATINIB	84	1 >1	40 29	7.5 8.3	4.2 4.1	NA	11%
TEPOTINIB	24	1 >1	71.4 28-30	NR	4.2 (overall)	NA	0%

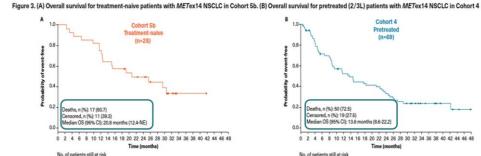
CAPMATINIB

Selected eligibility criteria

- Age ≥18 years
- · Stage IIIB/IV NSCLC
- . METex14 irrespective of MET GCN by central RT-PCR
- · EGFR wild-type (for L858R and delE19) and ALK rearrangement negative
- · ECOG performance status 0-1
- · ≥1 measurable lesion (RECIST 1.1)
- · Neurologically stable or asymptomatic brain metastases allowed

Primary endpoint Pretreated 2/3L N=69

N=28


Cohort 6ª,b

Cohort 7ª

N=32

Overall response rate (BIRC)

- Key secondary endpoint
- Duration of response (BIRC)
- Secondary endpoints
- · Disease control rate (BIRC/investigator)
- Duration of response (investigator)
- · Overall response rate (investigator)
- · Time to response (BIRC/investigator)
- · Progression-free survival (BIRC/investigator)
- Overall survival
- Safety
- Pharmacokinetics

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 No. of patients still at risk Time (months) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (months) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Cohort 5b (1L) 28 28 26 25 24 23 21 18 16 16 14 13 12 9 8 7 4 1 1 1 1 0 0 0 0 Cohort 4 (2/3L) 69 63 54 46 44 37 33 31 28 27 26 25 21 18 16 13 11 8 7 6 4 4 2 1 0

Wolf J et al, ASCO 2021

*Data not mature for expansion cohorts; § retrospective data, not reported in Profile 1001

NR: not reached; NA: not available

Wolf J, 2021 ASCO meeting; Le X, 2021 ASCO meeting; Drilon A Nat Med2020; Camidge R JTO 2021; Lu S, 2020 ASCO meeting; Paik PK NEJM 2020; Wolf J NEJM 2020; Offin M, JCO Precis Oncol 2020

TEPOTINIB

Selected endpoints

Primary:

· ORR by IRC (RECIST v1.1)

Secondary:

· ORR by investigator, DOR, PFS, OS, safety

		Overall (n=24)	1L (n=7)	2L (n=10)	3L (n=7)
	PR	10 (41.7)	5 (71.4)	3 (30.0)	2 (28.6)
Best overall	SD	1 (4.2)	0	1 (10.0)	0
response, n (%)	PD	5 (20.8)	1 (14.3)	2 (20.0)	2 (28.6)
	NE	8 (33.3)	1 (14.3)	4 (40.0)	3 (42.9)
ORR, n (%) [95% CI]		10 (41.7) [22.1, 63.4]	5 (71.4) [29.0, 96.3]	3 (30.0) [6.7, 65.2]	2 (28.6) [3.7, 71.0]

MET exon 14 skipping mutations: new drug on the horizon [SCC244]

GLORY

Key patient inclusion criteria

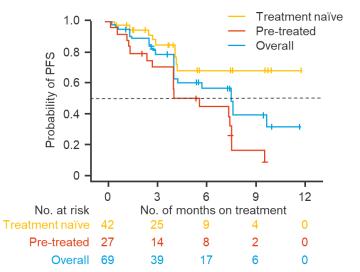
- Locally advanced or metastatic NSCLC
- METex14 skipping mutations
- ≤2 prior systemic therapies or no prior systemic therapy
- ECOG PS 0-1

(n=73)

Primary endpoint

• ORR (BIRC, RECIST v1.1.)

Secondary endpoints

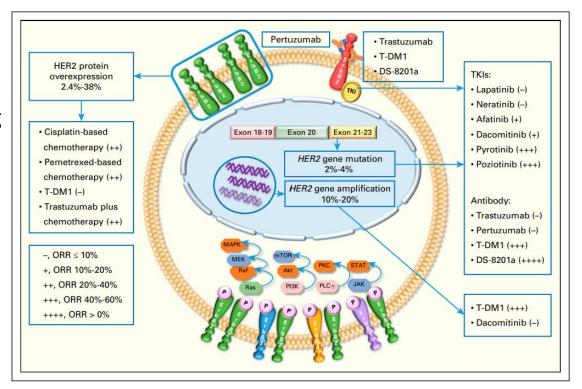

· DoR, DCR, TTR, PFS, OS, safety

Efficacy analysis set	Treatment-naïve (n=42)	Previously treated (n=27)	AII (n=69)
ORR, % (95%CI)	66.7 (50.5, 80.4)	51.9 (31.9, 71.3)	60.9 (48.4, 72.4)
DCR, % (95%CI)	88.1 (74.4, 96.0)	74.1 (53.7, 88.9)	82.6 (71.6, 90.7)
mDoR, mo (95%CI)	NE (NE, NE)	5.1 (2.8, 8.2)	8.2 (4.8, NE)
PFS events, n (%)	9 (21.4)	17 (63.0)	26 (37.7)
mPFS, mo (95%CI)	NE (4.3, NE)	5.7 (2.8, 7.6)	7.6 (4.2, NE)

TRAEs, n (%)	All (n=73)
Any	71 (97.3)
Grade ≥3	32 (43.8)
Serious	13 (17.8)
Led to dose interruption	18 (24.7)
Led to dose reduction	21 (28.8)
Led to discontinuation	5 (6.8)

^{*} Mainly peripheral edema, neutropenia, headache, rash

Progression-free survival

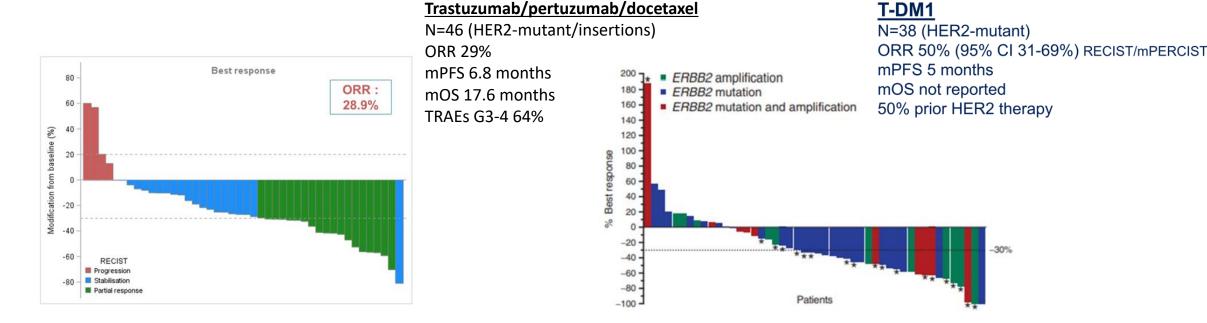


Lu S et al, AACR 2022

HER2 alterations: still a diagnostic challenge but...

Define "HER2 positivity" in lung cancer:

- Overexpression (2+/3+) in 23-35%, high (3+) in 4%
- Amplification in 10-20%, high in 7% (also in EGFR)
- Mutations in 2-4%, mainly insertions in exon 20-21 causing constitutive TKI activation
- The association between amplification and overexpression is controversial
- Lack of standardized testing techniques and cut-offs for defining HER2 positivity in lung cancer

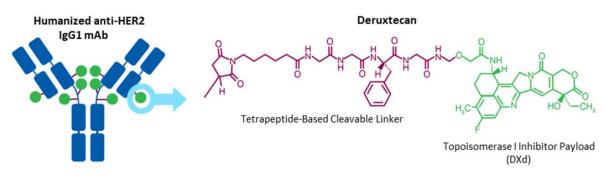


Zhao and Xia, JCO Precision Oncology 2020

Patients harbouring HER2 alterations more frequently women, young, never smoker, and mainly adenocarcinomas

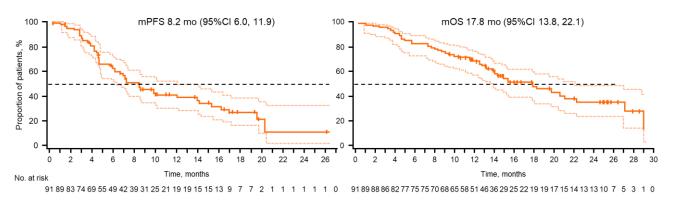
HER2 alterations: should we just copy the example of breast?

- **TKIs** bind to the tyrosine domain of activated HER2 protein → several pan-HER TKIs have been tested for NSCLC with modest results (ORR 20-30%) and relevant toxicities.
- Chemotherapy still a standard of care (waiting for..)
- The efficacy of the monoclonal antibodies pertuzumab and trastuzumab has also been studied, alone or conjugated to cytotoxic drugs such as trastuzumab emtansine (T-DM1).

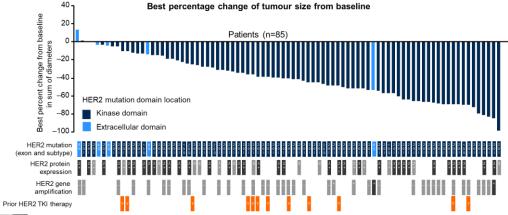


Mazieres J et al, ASCO 2021

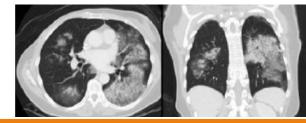
Li, BT; et al. Cancer Discovery 2020


The revolution of ADC for HER2 mutations

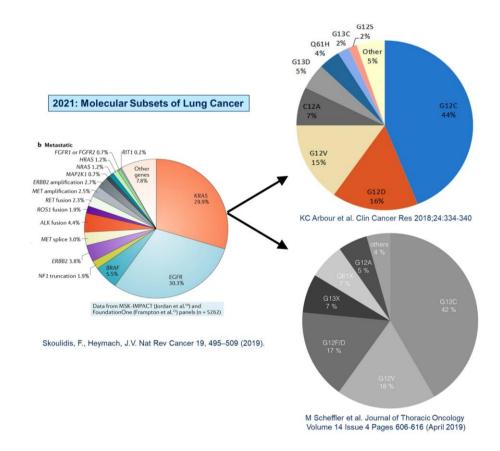
TRASTUZUMAB DERUXTECAN

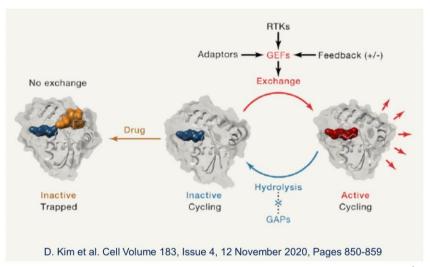



Progression-free survival


Overall survival

	Trastuzumab deruxtecan (n=91)		
Confirmed ORR, n (%) [95%CI]	50 (54.9) [44.2, 65.4]		
BOR, n (%)			
CR	1 (1.1)		
PR	49 (53.8)		
SD	34 (37.4)		
PD	3 (3.3)		
NE	4 (4.4)		
DCR, n (%) [95%CI]	84 (92.3) [84.8, 96.9]		
mDoR, mo (95%CI)	9.3 (5.7, 14.7)		
Median follow-up, mo (range)	13.1 (0.7–29.1)		




KRAS p.G12C mutations [Drugging the 'undruggable' KRAS]

- KRAS G12C most common KRAS variant
- 13% (1 in 8) or all lung adenocarcinomas
- Multiple KRAS G12C inhibitors being developed

KRAS G12C Inhibitors - Mechanism of Action

- Novel class of drugs → these are targeted therapies but they are not TKIs
- Allele-specific inhibitors targeting the Cysteine (C) residue.
- The inhibitors bind covalently to the mutant cysteine residue and occupy a pocket in the switch II region (SIIP) when KRAS G12C is in its inactive GDP-bound state (inactive-state selective drugs).

The first-in-class in KRAS p.G12C mutations: sotorasib

Key secondary endpoints

· DoR, DCR, PFS, OS, time

Data cutoff: February 22, 2022

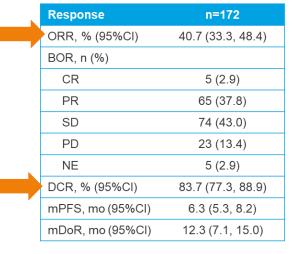
to response, safety

Safety and Pooled Phase 1/2: Advanced NSCLC. Screening/ long-term sotorasib 960 mg orally once daily (N = 174) enrollment Radiographic scan every 6 weeks up to week 48; once every 12 weeks thereafter follow-up **CODEBREAK 100** PHASE 2 PHASE 1 (n = 126)Key eligibility criteria (n = 48)**Primary endpoint Primary endpoint** · Locally advanced or metastatic · Safety and tolerability . ORR by RECIST 1.1 by BICR KRAS p.G12C-mutated solid tumors

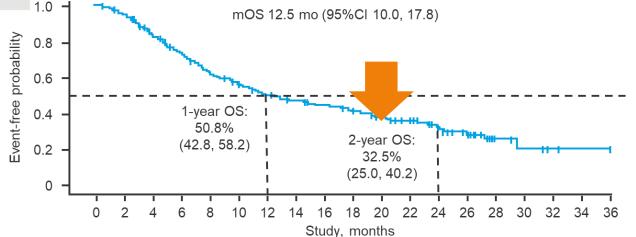
Key secondary endpoints

 PK, ORR, DoR, PFS, duration of stable disease

TRAEs, %	Overall (n=174)	Onset after 1 year (n=45)
Any	70	24
Grade 2	20	9
Grade 3	20	2
Grade 4	1	0
Led to treatment modification	22	2
Led to discontinuation	6	0

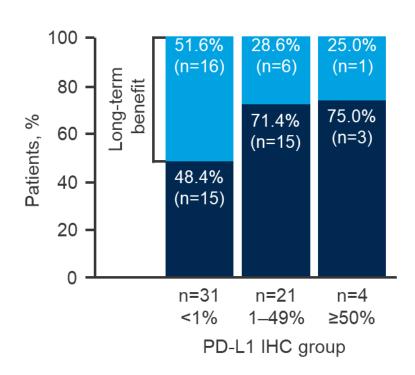

* Mainly diarrhea, ALT/AST increase, nausea and fatigue

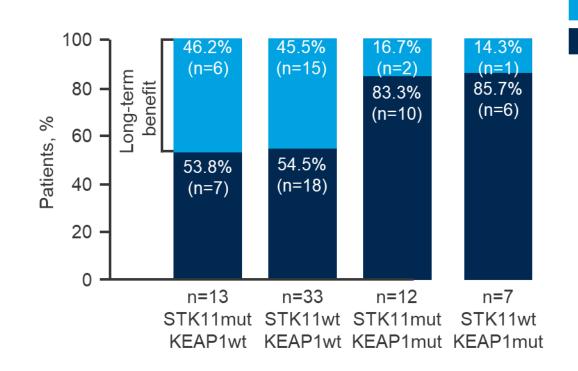
Median Follow-up for Overall Survival: 24.9 months


Global study with 83% of enrolled patients having received prior platinum-based chemotherapy and anti-PD-(L)1 therapy

· 1+ prior systemic therapy or

· Stable brain mets allowed


Overall survival



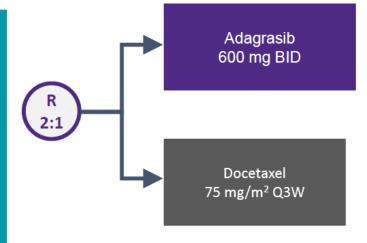
No. at risk 174 163 141 121 101 88 77 71 65 59 52 46 32 22 6 4 2 1 0

Dy GK et al, AACR 2022

The first-in-class in KRAS p.G12C mutations: sotorasib

- Long-term benefit was seen regardless of PD-L1 expression, KRAS G12C allele frequency, co-mutations
- Patients with long-term benefit had lower plasma ctDNA at baseline and these levels correlated with tumor burden

PFS ≥12 (n=40) PFS ≤3 and not


PR/CR (n=62)

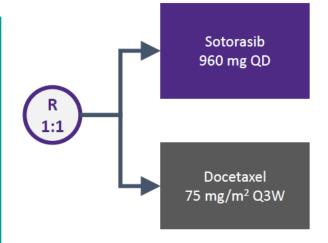
KRAS p.G12C mutations: phase 3 trials are ongoing in 2nd line

KRYSTAL-12: Phase 3 Randomized, Open-Label Trial of 2L Adagrasib vs Docetaxel in Patients With Previously Treated NSCLC With KRAS^{G12C} Mutation^{1,2}

Key Eligibility Criteria (n=452)

- NSCLC with KRAS^{G12C} mutation based on sponsor-approved test
- ECOG PS of 0 or 1
- No active brain metastases
- Prior treatment with platinum-based regimen and a checkpoint inhibitor
- No prior treatment with a KRAS inhibitor

Endpoints

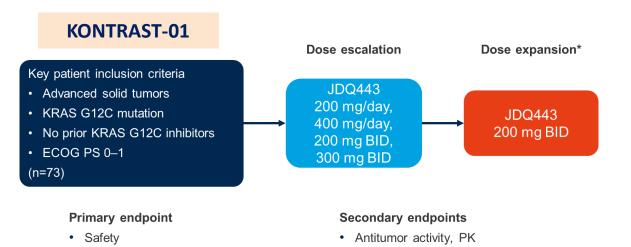

Primary: PFS, OS

Secondary: AEs, ORR, DOR, PROs, 1-year survival rate, PK

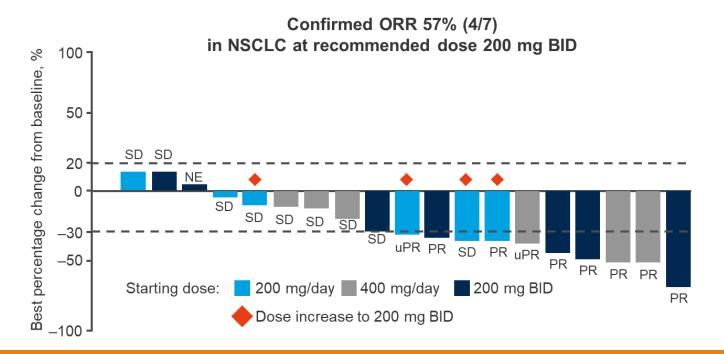
CodeBreaK 200: Phase 3 Randomized, Open-Label Trial of Sotorasib vs Docetaxel in Patients with Previously Treated Metastatic NSCLC with KRAS^{G12C} Mutation^{3,4}

Key Eligibility Criteria (n=345)

- NSCLC with KRAS^{G12C} mutation confirmed through central testing
- ECOG PS of 0 or 1
- No active brain metastases
- Prior treatment with platinum-based regiment and a checkpoint inhibitor
- No prior treatment with a KRAS G12C inhibitor

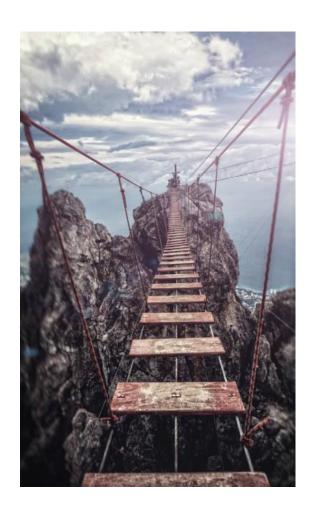


Endpoints


Primary: PFS

Secondary: OS, ORR, DOR, TTR, DCR, PRO, QoL, PK

KRAS p.G12C mutations: new drug on the horizon [JDQ443]



Grade ≥3 TRAEs, n (%)	JDQ443 200 mg BID (n=11)	JDQ443 all patients (n=39)
Any	0	5 (12.8)
Photosensitivity reaction	0	2 (5.1)
Fatigue	0	1 (2.6)
Neutropenia	0	1 (2.6)

BoR, n (%)	Patients with NSCLC (n=20)
PR (confirmed)	7 (35)
SD	11 (55)
PD	0
NE	2 (10)
ORR (confirmed and unconfirmed)	9 (45)
ORR (confirmed)	7 (35)

How did we arrive here & where are we going?

Enlarging the family of oncogene-addicted

- New drugs and targets on the horizon
- Understanding the *difficult* targets
- Drugging the *undruggable(s)*

Deciphering resistance & Patients' selection

In both oncogene-addicted and not oncogene-addicted

***** Bring innovation as early as possible

- Oncogene-addicted vs. not?
- Neoadjuvant vs/with adjuvant? For how long? Combos?

The primum movens is always the Test!!

Biomarkers testing rates over time

NGS testing rates over time

EGFR mutation testing data collected in 36 Italian institutions in 2020

ATLAS

https://rasatlas.com/

CLINICI ESPERTI DEL GRUPPO RAS LUNG

CLINICI ESPERTI DEL GRUPPO RAS NEOPLASIE COLON-RETTALI

Il Progetto EPROPA

AUMENTARE LO SCREENING MOLEOOLARE

FORNIRE UN
SUPPORTO LOGISTICO
AI PAZIENTI

FACILITARE ACCESSO DEI
PAZIENTI AGLI STUDI CLINICI

CARCINOMA POLMONARE: QUALI NOVITÀ NEL 2022?

